Portrait de Christian Gagné

Christian Gagné

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur titulaire, Université Laval, Département de génie électrique et informatique
Directeur, Institute Intelligence and Data (IID)
Sujets de recherche
Apprentissage automatique médical
Apprentissage de la programmation
Apprentissage de représentations
Apprentissage profond
Vision par ordinateur

Biographie

Christian Gagné est professeur au Département de génie électrique et de génie informatique de l’Université Laval depuis 2008, et dirige l’Institut intelligence et données (IID). Il détient une chaire en IA Canada-CIFAR et est membre associé à Mila – Institut québécois d’intelligence artificielle. Il est également membre du Laboratoire de vision et systèmes numériques (LVSN), une composante du Centre de recherche en robotique, vision et intelligence machine (CeRVIM) ainsi que du Centre de recherche en données massives (CRDM) de l’Université Laval. Il fait partie des regroupements stratégiques REPARTI et UNIQUE du Fonds de recherche du Québec – Nature et technologies (FRQNT), du centre VITAM du Fonds de recherche du Québec – Santé (FRQS) et de l’Observatoire international sur les impacts sociétaux de l’IA et du numérique (OBVIA).

Ses intérêts de recherche portent sur l’élaboration de méthodes pour l’apprentissage automatique et l’optimisation stochastique. En particulier, il se consacre aux réseaux de neurones profonds, à l’apprentissage et au transfert de représentations, au méta-apprentissage ainsi qu’à l’apprentissage multitâche. Il s’intéresse également aux approches d’optimisation basées sur des modèles probabilistes ainsi qu’aux algorithmes évolutionnaires, entre autres pour l’optimisation boîte noire et la programmation automatique. Une part importante de ses travaux porte également sur la mise en pratique de ces techniques dans des domaines comme la vision numérique, la microscopie, la santé, l’énergie et les transports.

Étudiants actuels

Doctorat - Université Laval
Doctorat - Université Laval
Maîtrise recherche - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval

Publications

Deep Active Learning: Unified and Principled Method for Query and Training
Changjian Shui
Fan Zhou
Boyu Wang
In this paper, we are proposing a unified and principled method for both the querying and training processes in deep batch active learning. … (voir plus)We are providing theoretical insights from the intuition of modeling the interactive procedure in active learning as distribution matching, by adopting the Wasserstein distance. As a consequence, we derived a new training loss from the theoretical analysis, which is decomposed into optimizing deep neural network parameters and batch query selection through alternative optimization. In addition, the loss for training a deep neural network is naturally formulated as a min-max optimization problem through leveraging the unlabeled data information. Moreover, the proposed principles also indicate an explicit uncertainty-diversity trade-off in the query batch selection. Finally, we evaluate our proposed method on different benchmarks, consistently showing better empirical performances and a better time-efficient query strategy compared to the baselines.
Session details: Digital entertainment technologies and arts track papers
Mike Preuss
Session details: Digital entertainment technologies and arts track posters
Mike Preuss
Session details: Digital entertainment technologies and arts track posters
Mike Preuss
Session details: Digital entertainment technologies and arts track papers
Mike Preuss