Portrait de Christian Gagné

Christian Gagné

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur titulaire, Université Laval, Département de génie électrique et informatique
Directeur, Institute Intelligence and Data (IID)
Sujets de recherche
Apprentissage automatique médical
Apprentissage de la programmation
Apprentissage de représentations
Apprentissage profond
Vision par ordinateur

Biographie

Christian Gagné est professeur au Département de génie électrique et de génie informatique de l’Université Laval depuis 2008, et dirige l’Institut intelligence et données (IID). Il détient une chaire en IA Canada-CIFAR et est membre associé à Mila – Institut québécois d’intelligence artificielle. Il est également membre du Laboratoire de vision et systèmes numériques (LVSN), une composante du Centre de recherche en robotique, vision et intelligence machine (CeRVIM) ainsi que du Centre de recherche en données massives (CRDM) de l’Université Laval. Il fait partie des regroupements stratégiques REPARTI et UNIQUE du Fonds de recherche du Québec – Nature et technologies (FRQNT), du centre VITAM du Fonds de recherche du Québec – Santé (FRQS) et de l’Observatoire international sur les impacts sociétaux de l’IA et du numérique (OBVIA).

Ses intérêts de recherche portent sur l’élaboration de méthodes pour l’apprentissage automatique et l’optimisation stochastique. En particulier, il se consacre aux réseaux de neurones profonds, à l’apprentissage et au transfert de représentations, au méta-apprentissage ainsi qu’à l’apprentissage multitâche. Il s’intéresse également aux approches d’optimisation basées sur des modèles probabilistes ainsi qu’aux algorithmes évolutionnaires, entre autres pour l’optimisation boîte noire et la programmation automatique. Une part importante de ses travaux porte également sur la mise en pratique de ces techniques dans des domaines comme la vision numérique, la microscopie, la santé, l’énergie et les transports.

Étudiants actuels

Doctorat - Université Laval
Doctorat - Université Laval
Maîtrise recherche - Université Laval
Maîtrise recherche - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Stagiaire de recherche - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval

Publications

Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
Andréanne Deschênes
Vincent Boulanger
Jean-Michel Bellavance
Julia Chabbert
Alexy Pelletier-Rioux
Flavie Lavoie-Cardinal
The development of signal unmixing algorithms is essential for leveraging multimodal datasets acquired through a wide array of scientific im… (voir plus)aging technologies, including hyperspectral or time-resolved acquisitions. In experimental physics, enhancing the spatio-temporal resolution or expanding the number of detection channels often leads to diminished sampling rate and signal-to-noise ratio (SNR), significantly affecting the efficacy of signal unmixing algorithms. We propose Latent Unmixing, a new approach which applies band-pass filters to the latent space of a multi-dimensional convolutional neural network to disentangle overlapping signal components. It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions. Using multi-dimensional convolution kernels to process all dimensions simultaneously enhances the network's ability to extract information from adjacent pixels, and time- or spectral-bins. This approach enables more effective separation of components in cases where individual pixels do not provide clear, well-resolved information. We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach: fluorescence lifetime microscopy and mode decomposition in optical fibers. The latent unmixing method extracts valuable information from complex signals that cannot be resolved by standard methods. It opens new possibilities in optics and photonics for multichannel separations at an increased sampling rate.
Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
Andréanne Deschênes
Vincent Boulanger
Jean-Michel Bellavance
Julia Chabbert
Alexy Pelletier-Rioux
Flavie Lavoie-Cardinal
Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning
Jiaqi Li
Rui Wang
Yuanhao Lai
Changjian Shui
Charles Ling
Shichun Yang
Boyu Wang
Fan Zhou
Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning
Jiaqi Li
Rui Wang
Yuanhao Lai
Changjian Shui
Charles Ling
Shichun Yang
Boyu Wang
Fan Zhou
Towards More General Loss and Setting in Unsupervised Domain Adaptation
Changjian Shui
Ruizhi Pu
Gezheng Xu
Jun Wen
Fan Zhou
Charles Ling
Boyu Wang
In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a … (voir plus)novel Rényi-
Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition
Theresa Wiesner
Andréanne Deschênes
Anthony Bilodeau
Benoit Turcotte
Flavie Lavoie-Cardinal
Domain Agnostic Image-to-image Translation using Low-Resolution Conditioning
Mohamed Abderrahmen Abid
Arman Afrasiyabi
Ihsen Hedhli
Jean‐François Lalonde
Improved Robustness Against Adaptive Attacks With Ensembles and Error-Correcting Output Codes
Thomas Philippon
Neural network ensembles have been studied extensively in the context of adversarial robustness and most ensemble-based approaches remain vu… (voir plus)lnerable to adaptive attacks. In this paper, we investigate the robustness of Error-Correcting Output Codes (ECOC) ensembles through architectural improvements and ensemble diversity promotion. We perform a comprehensive robustness assessment against adaptive attacks and investigate the relationship between ensemble diversity and robustness. Our results demonstrate the benefits of ECOC ensembles for adversarial robustness compared to regular ensembles of convolutional neural networks (CNNs) and show why the robustness of previous implementations is limited. We also propose an adversarial training method specific to ECOC ensembles that allows to further improve robustness to adaptive attacks.
A case–control study on predicting population risk of suicide using health administrative data: a research protocol
JianLi Wang
Fatemeh Gholi Zadeh Kharrat
Jean-François Pelletier
Louis Rochette
Eric Pelletier
Pascale Lévesque
Victoria Massamba
Camille Brousseau-Paradis
Mada Mohammed
Geneviève Gariépy
Alain Lesage
Filtering Pixel Latent Variables for Unmixing Volumetric Images
Vincent Boulanger
Flavie Lavoie-Cardinal
Measurements of different overlapping components require robust unmixing algorithms to convert the raw multi-dimensional measurements to use… (voir plus)ful unmixed images. Such algorithms perform reliable separation of the components when the raw signal is fully resolved and contains enough information to fit curves on the raw distributions. In experimental physics, measurements are often noisy, undersam-pled, or unresolved spatially or spectrally. We propose a novel method where bandpass filters are applied to the latent space of a multi-dimensional convolutional neural network to separate the overlapping signal components and extract each of their relative contributions. Simultaneously processing all dimensions with multi-dimensional convolution kernels empowers the network to combine the information from adjacent pixels and time-or spectral-bins, facilitating component separation in instances where individual pixels lack well-resolved information. We demonstrate the applicability of the method to real experimental physics problems using fluorescence lifetime microscopy and mode decomposition in optical fibers as test cases. The successful application of our approach to these two distinct experimental cases, characterized by different measured distributions, highlights the versatility of our approach in addressing a wide array of imaging tasks.
Filtering Pixel Latent Variables for Unmixing Volumetric Images
Vincent Boulanger
Flavie Lavoie-Cardinal
Measurements of different overlapping components require robust unmixing algorithms to convert the raw multi-dimensional measurements to use… (voir plus)ful unmixed images. Such algorithms perform reliable separation of the components when the raw signal is fully resolved and contains enough information to fit curves on the raw distributions. In experimental physics, measurements are often noisy, undersam-pled, or unresolved spatially or spectrally. We propose a novel method where bandpass filters are applied to the latent space of a multi-dimensional convolutional neural network to separate the overlapping signal components and extract each of their relative contributions. Simultaneously processing all dimensions with multi-dimensional convolution kernels empowers the network to combine the information from adjacent pixels and time-or spectral-bins, facilitating component separation in instances where individual pixels lack well-resolved information. We demonstrate the applicability of the method to real experimental physics problems using fluorescence lifetime microscopy and mode decomposition in optical fibers as test cases. The successful application of our approach to these two distinct experimental cases, characterized by different measured distributions, highlights the versatility of our approach in addressing a wide array of imaging tasks.
Gap Minimization for Knowledge Sharing and Transfer
Boyu Wang
Jorge A. Mendez
Changjian Shui
Fan Zhou
Di Wu
Gezheng Xu
Eric R. Eaton
Learning from multiple related tasks by knowledge sharing and transfer has become increasingly relevant over the last two decades. In order … (voir plus)to successfully transfer information from one task to another, it is critical to understand the similarities and differences between the domains. In this paper, we introduce the notion of \emph{performance gap}, an intuitive and novel measure of the distance between learning tasks. Unlike existing measures which are used as tools to bound the difference of expected risks between tasks (e.g.,