Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Celo: Training Versatile Learned Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned upda… (voir plus)te rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
La comptabilité véhicule souvent injustement, une image terne et ennuyeuse, auprès du grand public et des jeunes étudiants choisissant l… (voir plus)eur orientation. Dans cet article, nous questionnons l’effet de pratiques pédagogiques sur la perception par les étudiants, des soft skills attendues par les employeurs. Pour cela nous réalisons une quasi-expérimentation dans laquelle nous comparons les perceptions des étudiants selon que le cours ait été animé sous un format classique (application des connaissances par le biais d’exercices avec corrigé par l’enseignant) ou sous la forme d’une simulation de gestion (application des connaissances en vue de prendre des décisions et piloter une entreprise fictive). Les résultats de la recherche montrent qu’une simulation de gestion, plus que les travaux dirigés classiques, permettent aux primo-apprenants en comptabilité, d’avoir une meilleure perception des soft skills attendues par les praticiens et les recruteurs. Nos résultats rappellent l’importance de donner une représentation réaliste (éloignée des clichés) de la profession, afin de rendre les filières d’enseignement de la comptabilité plus attractives.
The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of a Markov decision process, and is the basis of… (voir plus) many reinforcement learning (RL) algorithms as well. As the error convergence rate of VI as a function of iteration
As text generation systems' outputs are increasingly anthropomorphic -- perceived as human-like -- scholars have also raised increasing conc… (voir plus)erns about how such outputs can lead to harmful outcomes, such as users over-relying or developing emotional dependence on these systems. How to intervene on such system outputs to mitigate anthropomorphic behaviors and their attendant harmful outcomes, however, remains understudied. With this work, we aim to provide empirical and theoretical grounding for developing such interventions. To do so, we compile an inventory of interventions grounded both in prior literature and a crowdsourced study where participants edited system outputs to make them less human-like. Drawing on this inventory, we also develop a conceptual framework to help characterize the landscape of possible interventions, articulate distinctions between different types of interventions, and provide a theoretical basis for evaluating the effectiveness of different interventions.
Addressing real-world optimization problems becomes particularly challenging when analytic objective functions or constraints are unavailabl… (voir plus)e. While numerous studies have addressed the issue of unknown objectives, limited research has focused on scenarios where feasibility constraints are not given explicitly. Overlooking these constraints can lead to spurious solutions that are unrealistic in practice. To deal with such unknown constraints, we propose to perform optimization within the data manifold using diffusion models. To constrain the optimization process to the data manifold, we reformulate the original optimization problem as a sampling problem from the product of the Boltzmann distribution defined by the objective function and the data distribution learned by the diffusion model. Depending on the differentiability of the objective function, we propose two different sampling methods. For differentiable objectives, we propose a two-stage framework that begins with a guided diffusion process for warm-up, followed by a Langevin dynamics stage for further correction. For non-differentiable objectives, we propose an iterative importance sampling strategy using the diffusion model as the proposal distribution. Comprehensive experiments on a synthetic dataset, six real-world black-box optimization datasets, and a multi-objective molecule optimization dataset show that our method achieves better or comparable performance with previous state-of-the-art baselines.
The surge in electricity use, coupled with the dependency on intermittent renewable energy sources, poses significant hurdles to effectively… (voir plus) managing power grids, particularly during times of peak demand. Demand Response programs and energy conservation measures are essential to operate energy grids while ensuring a responsible use of our resources This research combines distributed optimization using ADMM with Deep Learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. The resulting control algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.
2025-01-01
IEEE Transactions on Automation Science and Engineering (publié)