Frequency-based View Selection in Gaussian Splatting Reconstruction
Monica Li
Pierre-Yves Lajoie
Three-dimensional reconstruction is a fundamental problem in robotics perception. We examine the problem of active view selection to perform… (voir plus) 3D Gaussian Splatting reconstructions with as few input images as possible. Although 3D Gaussian Splatting has made significant progress in image rendering and 3D reconstruction, the quality of the reconstruction is strongly impacted by the selection of 2D images and the estimation of camera poses through Structure-from-Motion (SfM) algorithms. Current methods to select views that rely on uncertainties from occlusions, depth ambiguities, or neural network predictions directly are insufficient to handle the issue and struggle to generalize to new scenes. By ranking the potential views in the frequency domain, we are able to effectively estimate the potential information gain of new viewpoints without ground truth data. By overcoming current constraints on model architecture and efficacy, our method achieves state-of-the-art results in view selection, demonstrating its potential for efficient image-based 3D reconstruction.
Derivation and validation of indices incorporating vasopressor dose and blood pressure values over time
Alain Gervais
François Lamontagne
Jean-Baptiste Michaud
KJ Neill
Adhikari
Jean-Michel Pagé
Marie-Hélène Masse
Michael O Harhay
Michael Chassé
Félix Lamontagne
Katia Laforge
Alexandra Fortin
Marc-André Leclair
Simon Lévesque
Marie-Pier Domingue
Neda Momenzadeh
Ruxandra Pinto
Maxime Morin-Lavoie
Francis Carter … (voir 2 de plus)
Félix Camirand Lemyre
MD MSc. François Lamontagne
Rationale The blood pressure value below which the benefits of vasopressors clearly outweigh their disadvantages is uncertain. Objectives Th… (voir plus)e main objective of this analysis was to investigate the statistical properties and potential utility of indices estimating the vasopressor dose-rates as a function of blood pressure values over time. Methods In this single-center observational study, we collected blood pressure values from intensive care unit (ICU) monitors and norepinephrine dose-rates from infusion pumps corresponding to a derivation and a validation cohort. Patients included in each cohort were 18 years or older and received norepinephrine in the ICU. We defined and derived indices corresponding to vasopressor therapy above (>65 mmHg) and below (60 mmHg) targets. We report the distribution of both indices over time from both cohorts as well as their associations with hospital mortal
Derivation and validation of indices incorporating vasopressor dose and blood pressure values over time
Alain Gervais
François Lamontagne
Jean-Baptiste Michaud
KJ Neill
Adhikari
Jean-Michel Pagé
Marie-Hélène Masse
Michael O Harhay
Michael Chassé
Félix Lamontagne
Katia Laforge
Alexandra Fortin
Marc-André Leclair
Simon Lévesque
Marie-Pier Domingue
Neda Momenzadeh
Ruxandra Pinto
Maxime Morin-Lavoie
Francis Carter … (voir 2 de plus)
Félix Camirand Lemyre
MD MSc. François Lamontagne
Rationale The blood pressure value below which the benefits of vasopressors clearly outweigh their disadvantages is uncertain. Objectives Th… (voir plus)e main objective of this analysis was to investigate the statistical properties and potential utility of indices estimating the vasopressor dose-rates as a function of blood pressure values over time. Methods In this single-center observational study, we collected blood pressure values from intensive care unit (ICU) monitors and norepinephrine dose-rates from infusion pumps corresponding to a derivation and a validation cohort. Patients included in each cohort were 18 years or older and received norepinephrine in the ICU. We defined and derived indices corresponding to vasopressor therapy above (>65 mmHg) and below (60 mmHg) targets. We report the distribution of both indices over time from both cohorts as well as their associations with hospital mortal
A neuronal least-action principle for real-time learning in cortical circuits
Walter Senn
Dominik Dold
Akos F. Kungl
Benjamin Ellenberger
Jakob Jordan
João Sacramento
Mihai A. Petrovici
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (voir plus)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioural error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
A neuronal least-action principle for real-time learning in cortical circuits
Walter Senn
Dominik Dold
Akos F. Kungl
Benjamin Ellenberger
Jakob Jordan
João Sacramento
Mihai A. Petrovici
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (voir plus)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioural error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
Not Only the Last-Layer Features for Spurious Correlations: All Layer Deep Feature Reweighting
Humza Wajid Hameed
G'eraldin Nanfack
Spurious correlations are a major source of errors for machine learning models, in particular when aiming for group-level fairness. It has b… (voir plus)een recently shown that a powerful approach to combat spurious correlations is to re-train the last layer on a balanced validation dataset, isolating robust features for the predictor. However, key attributes can sometimes be discarded by neural networks towards the last layer. In this work, we thus consider retraining a classifier on a set of features derived from all layers. We utilize a recently proposed feature selection strategy to select unbiased features from all the layers. We observe this approach gives significant improvements in worst-group accuracy on several standard benchmarks.
Protein Language Models: Is Scaling Necessary?
Quentin Fournier
Robert M. Vernon
Almer van der Sloot
Benjamin Schulz
Christopher James Langmead
Protein Language Models: Is Scaling Necessary?
Quentin Fournier
Robert M. Vernon
Almer van der Sloot
Benjamin Schulz
Christopher James Langmead
Public protein sequence databases contain samples from the fitness landscape explored by nature. Protein language models (pLMs) pre-trained … (voir plus)on these sequences aim to capture this landscape for tasks like property prediction and protein design. Following the same trend as in natural language processing, pLMs have continuously been scaled up. However, the premise that scale leads to better performance assumes that source databases provide accurate representation of the underlying fitness landscape, which is likely false. By developing an efficient codebase, designing a modern architecture, and addressing data quality concerns such as sample bias, we introduce AMPLIFY, a best-in-class pLM that is orders of magnitude less expensive to train and deploy than previous models. Furthermore, to support the scientific community and democratize the training of pLMs, we have open-sourced AMPLIFY’s pre-training codebase, data, and model checkpoints.
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
Stephen R. Pfohl
Heather Cole-Lewis
Rory Sayres
Darlene Neal
Mercy Nyamewaa Asiedu
Awa Dieng
Nenad Tomasev
Qazi Mamunur Rashid
Shekoofeh Azizi
Liam G. McCoy
Leo Anthony Celi
Yun Liu
Mike Schaekermann
Alanna Walton
Alicia Parrish
Chirag Nagpal
Preeti Singh
Akeiylah Dewitt
Philip Mansfield … (voir 10 de plus)
Sushant Prakash
Katherine Heller
Alan Karthikesalingam
Christopher Semturs
Joelle Barral
Greg Corrado
Yossi Matias
Jamila Smith-Loud
Ivor Horn
Karan Singhal
Self Supervised Dictionary Learning Using Kernel Matching
Shubham Choudhary
Demba Ba
We introduce a self supervised framework for learning representations in the context of dictionary learning. We cast the problem as a kernel… (voir plus) matching task between the input and the representation space, with constraints on the latent kernel. By adjusting these constraints, we demonstrate how the framework can adapt to different learning objectives. We then formulate a novel Alternate Direction Method of Multipli-ers (ADMM) based algorithm to solve the optimization problem and connect the dynamics to classical alternate minimization techniques. This approach offers a unique way of learning representations with kernel constraints, that enable us implicitly learn a generative map for the data from the learned representations which can have broad applications in representation learning tasks both in machine learning and neuro-science.
Self Supervised Dictionary Learning Using Kernel Matching
Shubham Choudhary
Demba Ba
We introduce a self supervised framework for learning representations in the context of dictionary learning. We cast the problem as a kernel… (voir plus) matching task between the input and the representation space, with constraints on the latent kernel. By adjusting these constraints, we demonstrate how the framework can adapt to different learning objectives. We then formulate a novel Alternate Direction Method of Multipli-ers (ADMM) based algorithm to solve the optimization problem and connect the dynamics to classical alternate minimization techniques. This approach offers a unique way of learning representations with kernel constraints, that enable us implicitly learn a generative map for the data from the learned representations which can have broad applications in representation learning tasks both in machine learning and neuro-science.
What Are They Doing? Joint Audio-Speech Co-Reasoning
Yingzhi Wang
Pooneh Mousavi
Artem Ploujnikov