Publications

DyG2Vec: Efficient Representation Learning for Dynamic Graphs
Mohammad Alomrani
Mahdi Biparva
Yingxue Zhang
Temporal graph neural networks have shown promising results in learning inductive representations by automatically extracting temporal patte… (voir plus)rns. However, previous works often rely on complex memory modules or inefficient random walk methods to construct temporal representations. To address these limitations, we present an efficient yet effective attention-based encoder that leverages temporal edge encodings and window-based subgraph sampling to generate task-agnostic embeddings. Moreover, we propose a joint-embedding architecture using non-contrastive SSL to learn rich temporal embeddings without labels. Experimental results on 7 benchmark datasets indicate that on average, our model outperforms SoTA baselines on the future link prediction task by 4.23% for the transductive setting and 3.30% for the inductive setting while only requiring 5-10x less training/inference time. Lastly, different aspects of the proposed framework are investigated through experimental analysis and ablation studies. The code is publicly available at https://github.com/huawei-noah/noah-research/tree/master/graph_atlas.
JaxPruner: A concise library for sparsity research
Joo Hyung Lee
Wonpyo Park
Nicole Elyse Mitchell
Jonathan Pilault
Johan Samir Obando Ceron
Han-Byul Kim
Namhoon Lee
Elias Frantar
Yun Long
Amir Yazdanbakhsh
Shivani Agrawal
Suvinay Subramanian
Xin Wang
Sheng-Chun Kao
Xingyao Zhang
Trevor Gale
Aart J.C. Bik
Woohyun Han
Milen Ferev
Zhonglin Han … (voir 5 de plus)
Hong-Seok Kim
Yann Dauphin
Utku Evci
This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims … (voir plus)to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.
GABAergic inhibition shapes behavior and neural dynamics in human visual working memory
Jan Kujala
Carolina Ciumas
Julien Jung
Sandrine Bouvard
Françoise Lecaignard
Amélie Lothe
Romain Bouet
Philippe Ryvlin
Abstract Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gam… (voir plus)ma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.
On the Stability of a non-hyperbolic nonlinear map with non-bounded set of non-isolated fixed points with applications to Machine Learning
Roberta Hansen
Matias Vera
Lautaro Estienne
LUCIANA FERRER
Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study
Mehil B. Shah
Mohammad Masudur Rahman
Are LLMs Robust for Spoken Dialogues?
Seyed Mahed Mousavi
Gabriel Roccabruna
Simone Alghisi
Massimo Rizzoli
Giuseppe Riccardi
Large Pre-Trained Language Models have demonstrated state-of-the-art performance in different downstream tasks, including dialogue state tra… (voir plus)cking and end-to-end response generation. Nevertheless, most of the publicly available datasets and benchmarks on task-oriented dialogues focus on written conversations. Consequently, the robustness of the developed models to spoken interactions is unknown. In this work, we have evaluated the performance of LLMs for spoken task-oriented dialogues on the DSTC11 test sets. Due to the lack of proper spoken dialogue datasets, we have automatically transcribed a development set of spoken dialogues with a state-of-the-art ASR engine. We have characterized the ASR-error types and their distributions and simulated these errors in a large dataset of dialogues. We report the intrinsic (perplexity) and extrinsic (human evaluation) performance of fine-tuned GPT-2 and T5 models in two subtasks of response generation and dialogue state tracking, respectively. The results show that LLMs are not robust to spoken noise by default, however, fine-tuning/training such models on a proper dataset of spoken TODs can result in a more robust performance.
A primer on the use of machine learning to distil knowledge from data in biological psychiatry.
Thomas P. Quinn
Jonathan L. Hess
Victoria S. Marshe
Michelle M. Barnett
Anne-Christin Hauschild
Malgorzata Maciukiewicz
Samar S. M. Elsheikh
Xiaoyu Men
Emanuel Schwarz
Michael S. Breen
Eric J. Barnett
Yanli Zhang-James
Mehmet Eren Ahsen
Han Cao
Junfang Chen
Jiahui Hou
Asif Salekin
Ping-I Lin
Kristin K. Nicodemus … (voir 7 de plus)
Andreas Meyer-Lindenberg
Isabelle Bichindaritz
Stephen V. Faraone
Murray J. Cairns
Gaurav Pandey
Daniel J. Müller
Stephen J. Glatt
AITA: AI trustworthiness assessment
Bertrand Braunschweig
Stefan Buijsman
Faicel Chamroukhi
Fredrik Heintz
Juliette Mattioli
Maximilian Poretschkin
A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems
Shanshan Wang
This paper studies a distributionally robust multi-item newsvendor problem, where the demand distribution is unknown but specified with a ge… (voir plus)neral event-wise ambiguity set. Using the event-wise affine decision rules, we can obtain a conservative approximation formulation of the problem, which can typically be further reformulated as a linear program. In order to efficiently solve the resulting large-scale linear program, we develop a column generation-based decomposition scheme and speed up the computational efficiency by exploiting a special column selection strategy and stopping early based on a Karush-Kuhn-Tucker condition test. Focusing on the Wasserstein ambiguity set and the event-wise mean absolute deviation set, a computational study demonstrates both the computational efficiency of the proposed algorithm, which significantly outperforms a commercial solver and a Benders decomposition method, and the out-of-sample superiority of distributionally robust solutions relative to their sample average approximation counterparts. History: Accepted by Nicola Secomandi, Area Editor for Stochastic Models & Reinforcement Learning. Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada [492997-2016, RGPIN-2016-05208], the National Natural Science Foundation of China [71972012], Alliance de recherche numérique du Canada, and Canada Research Chairs [CRC-2018-00105]. It was also supported by Groupe d’études et de recherche en analyse des décisions (GERAD). Finally, this research was enabled in part by support provided by Digital Research Alliance of Canada ( https://alliancecan.ca/en ). Supplemental Material: The software that supports the findings of this study is available within the paper and its supplemental information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0010 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0010 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
Dataset Difficulty and the Role of Inductive Bias
Devin Kwok
Nikhil Anand
Jonathan Frankle
Motivated by the goals of dataset pruning and defect identification, a growing body of methods have been developed to score individual examp… (voir plus)les within a dataset. These methods, which we call"example difficulty scores", are typically used to rank or categorize examples, but the consistency of rankings between different training runs, scoring methods, and model architectures is generally unknown. To determine how example rankings vary due to these random and controlled effects, we systematically compare different formulations of scores over a range of runs and model architectures. We find that scores largely share the following traits: they are noisy over individual runs of a model, strongly correlated with a single notion of difficulty, and reveal examples that range from being highly sensitive to insensitive to the inductive biases of certain model architectures. Drawing from statistical genetics, we develop a simple method for fingerprinting model architectures using a few sensitive examples. These findings guide practitioners in maximizing the consistency of their scores (e.g. by choosing appropriate scoring methods, number of runs, and subsets of examples), and establishes comprehensive baselines for evaluating scores in the future.
GPS-SSL: Guided Positive Sampling to Inject Prior Into Self-Supervised Learning
Aarash Feizi
Randall Balestriero
Arantxa Casanova
We propose Guided Positive Sampling Self-Supervised Learning (GPS-SSL), a general method to inject a priori knowledge into Self-Supervised L… (voir plus)earning (SSL) positive samples selection. Current SSL methods leverage Data-Augmentations (DA) for generating positive samples and incorporate prior knowledge - an incorrect, or too weak DA will drastically reduce the quality of the learned representation. GPS-SSL proposes instead to design a metric space where Euclidean distances become a meaningful proxy for semantic relationship. In that space, it is now possible to generate positive samples from nearest neighbor sampling. Any prior knowledge can now be embedded into that metric space independently from the employed DA. From its simplicity, GPS-SSL is applicable to any SSL method, e.g. SimCLR or BYOL. A key benefit of GPS-SSL is in reducing the pressure in tailoring strong DAs. For example GPS-SSL reaches 85.58% on Cifar10 with weak DA while the baseline only reaches 37.51%. We therefore move a step forward towards the goal of making SSL less reliant on DA. We also show that even when using strong DAs, GPS-SSL outperforms the baselines on under-studied domains. We evaluate GPS-SSL along with multiple baseline SSL methods on numerous downstream datasets from different domains when the models use strong or minimal data augmentations. We hope that GPS-SSL will open new avenues in studying how to inject a priori knowledge into SSL in a principled manner.
Recovering Dantzig–Wolfe Bounds by Cutting Planes
Rui Chen
Oktay Günlük
Leveraging Dantzig–Wolfe Decomposition in the Original Variable Space for Mixed-Integer Programming Dantzig–Wolfe decomposition has been… (voir plus) extensively applied to solve large-scale mixed-integer programs with decomposable structures, leading to exact solution approaches, such as branch and price. However, these approaches would require solving the problem in an extended variable space and are not readily present in off-the-shelf solvers. In “Recovering Dantzig–Wolfe Bounds by Cutting Planes,” Chen, Günlük, and Lodi propose a computational effective approach for generating cutting planes from Dantzig–Wolfe decomposition to enhance branch and cut in the space of original variables. The proposed approach requires a relatively small number of cutting planes to recover the strength of the Dantzig–Wolfe dual bound and should be easy to implement in general-purpose mixed-integer programming solvers. The authors show that these cutting planes typically lead to a formulation with lower dual degeneracy and hence, a better computational performance than naïve approaches, such as the objective function cut.