Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
A growing body of computational studies shows that simple machine learning agents converge to cooperative behaviors in social dilemmas, such… (voir plus) as collusive price-setting in oligopoly markets, raising questions about what drives this outcome. In this work, we provide theoretical foundations for this phenomenon in the context of self-play multi-agent Q-learners in the iterated prisoner’s dilemma. We characterize broad conditions under which such agents provably learn the cooperative Pavlov (win-stay, lose-shift) policy rather than the Pareto-dominated “always defect” policy. We validate our theoretical results through additional experiments, demonstrating their robustness across a broader class of deep learning algorithms.
Large language models exhibit exciting capabilities, yet can show surprisingly narrow generalization from finetuning. E.g. they can fail to … (voir plus)generalize to simple reversals of relations they are trained on, or fail to make simple logical deductions based on trained information. These failures to generalize from fine-tuning can hinder practical application of these models. On the other hand, language models' in-context learning shows different inductive biases, and can generalize better in some cases. Here, we explore these differences in generalization between in-context- and fine-tuning-based learning. To do so, we constructed several novel datasets to evaluate and improve models' abilities to generalize from finetuning data. The datasets are designed to create clean tests of generalization, by isolating the knowledge in the dataset from that in pretraining. We expose pretrained large models to controlled subsets of the information in these datasets -- either in context, or through fine-tuning -- and evaluate their performance on test sets that require various types of generalization. We find overall that in data-matched settings, in-context learning can generalize more flexibly than fine-tuning (though we also find some qualifications of prior findings, such as cases when fine-tuning can generalize to reversals embedded in a larger structure of knowledge). We build on these findings to propose a method to enable improved generalization from fine-tuning: adding in-context inferences to finetuning data. We show that this method improves generalization across various splits of our datasets and other benchmarks. Our results have implications for understanding the inductive biases of different modes of learning in language models, and practically improving their performance.
We propose a testable universality hypothesis, asserting that seemingly disparate neural network solutions observed in the simple task of mo… (voir plus)dular addition are unified under a common abstract algorithm. While prior work interpreted variations in neuron-level representations as evidence for distinct algorithms, we demonstrate - through multi-level analyses spanning neurons, neuron clusters, and entire networks - that multilayer perceptrons and transformers universally implement the abstract algorithm we call the approximate Chinese Remainder Theorem. Crucially, we introduce approximate cosets and show that neurons activate exclusively on them. Furthermore, our theory works for deep neural networks (DNNs). It predicts that universally learned solutions in DNNs with trainable embeddings or more than one hidden layer require only O(log n) features, a result we empirically confirm. This work thus provides the first theory-backed interpretation of multilayer networks solving modular addition. It advances generalizable interpretability and opens a testable universality hypothesis for group multiplication beyond modular addition.