Portrait of Cas Wognum is unavailable

Cas Wognum

Alumni

Publications

Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Ali Denton
Kristina Ulicna
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Ali Denton
Kristina Ulicna
Michael Craig
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Joao Alex Cunha
Zhiyi Li
Samuel Maddrell-Mander
Callum McLean
Jama Hussein Mohamud
Michael Craig
Cristian Gabellini
Kerstin Klaser
Josef Dean
Maciej Sypetkowski
Ioannis Koutis
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.