Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
Guojing Cong
Graph neural networks (GNNs) have emerged as one of the most effective ML techniques for drug effect prediction from drug molecular graphs. … (voir plus)Despite having immense potential, GNN models lack performance when using datasets that contain high-dimensional, asymmetrically co-occurrent drug effects as targets with complex correlations between them. Training individual learning models for each drug effect and incorporating every prediction result for a wide spectrum of drug effects are impractical. Therefore, an opportunity exists to address this challenge as multitarget prediction problems and predict all drug effects at a time. We developed standard and hybrid GNNs to perform two separate tasks: multiregression for continuous values and multilabel classification for categorical values contained in our datasets. Because multilabel classification makes the target data even more sparse and introduces asymmetric label co-occurrence, learning these models becomes difficult and heavily impacts the GNN's performance. To address these challenges, we propose a new data oversampling technique to improve multilabel classification performances on all the given imbalanced molecular graph datasets. Using the technique, we improve the data imbalance ratio of the drug effects while protecting the datasets' integrity. Finally, we evaluate the multilabel classification performance of the best-performing hybrid GNN model on all the oversampled datasets obtained from the proposed oversampling technique. In all the evaluation metrics (i.e., precision, recall, and F1 score), this model significantly outperforms other ML models, including GNN models when they are trained on the original datasets or oversampled datasets with MLSMOTE, which is a well-known oversampling technique.
SOAK: Same/Other/All K-fold cross-validation for estimating similarity of patterns in data subsets
Gabrielle Thibault
C. Bodine
Paul Nelson Arellano
Alexander F Shenkin
Olivia J. Lindly
In many real-world applications of machine learning, we are interested to know if it is possible to train on the data that we have gathered … (voir plus)so far, and obtain accurate predictions on a new test data subset that is qualitatively different in some respect (time period, geographic region, etc). Another question is whether data subsets are similar enough so that it is beneficial to combine subsets during model training. We propose SOAK, Same/Other/All K-fold cross-validation, a new method which can be used to answer both questions. SOAK systematically compares models which are trained on different subsets of data, and then used for prediction on a fixed test subset, to estimate the similarity of learnable/predictable patterns in data subsets. We show results of using SOAK on six new real data sets (with geographic/temporal subsets, to check if predictions are accurate on new subsets), 3 image pair data sets (subsets are different image types, to check that we get smaller prediction error on similar images), and 11 benchmark data sets with predefined train/test splits (to check similarity of predefined splits).
"I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI
Myra Cheng
Alicia DeVrio
Lisa Egede
Su Lin Blodgett
Many state-of-the-art generative AI (GenAI) systems are increasingly prone to anthropomorphic behaviors, i.e., to generating outputs that ar… (voir plus)e perceived to be human-like. While this has led to scholars increasingly raising concerns about possible negative impacts such anthropomorphic AI systems can give rise to, anthropomorphism in AI development, deployment, and use remains vastly overlooked, understudied, and underspecified. In this perspective, we argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI, and outline a call to action.
ACCO: Accumulate while you Communicate, Hiding Communications in Distributed LLM Training
Adel Nabli
Louis Fournier
Pierre ERBACHER
Louis Serrano
Edouard Oyallon
AgentMerge: Enhancing Generalization in Fine-Tuned LLM Agents
Megh Thakkar
Léo Boisvert
Thibault Le Sellier de Chezelles
Alexandre Piché
Alexandre Lacoste
Massimo Caccia
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Tianyu Zhang
Aarash Feizi
Abhay Puri
Akshay Kalkunte Suresh
François Savard
Ahmed Masry
Shravan Nayak
Rabiul Awal
Mahsa Massoud
Amirhossein Abaskohi
Zichao Li
Suyuchen Wang
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubham Agarwal
Sanket Biswas … (voir 23 de plus)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Joao Monteiro
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Krishnamurthy Dj Dvijotham
Srinivas Sunkara
Torsten Scholak
Sepideh Kharaghani
M. Özsu
Sean Hughes
Issam Hadj Laradji
Spandana Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (voir plus) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Combining Domain and Alignment Vectors to Achieve Better Knowledge-Safety Trade-offs in LLMs
Megh Thakkar
Yash More
Quentin Fournier
Matthew D Riemer
Pin-Yu Chen
Payel Das
There is a growing interest in training domain-expert LLMs that excel in specific technical fields compared to their general-purpose instruc… (voir plus)tion-tuned counterparts. However, these expert models often experience a loss in their safety abilities in the process, making them capable of generating harmful content. As a solution, we introduce an efficient and effective merging-based alignment method called \textsc{MergeAlign} that interpolates the domain and alignment vectors, creating safer domain-specific models while preserving their utility. We apply \textsc{MergeAlign} on Llama3 variants that are experts in medicine and finance, obtaining substantial alignment improvements with minimal to no degradation on domain-specific benchmarks. We study the impact of model merging through model similarity metrics and contributions of individual models being merged. We hope our findings open new research avenues and inspire more efficient development of safe expert LLMs.
Compositional Risk Minimization
Divyat Mahajan
Mohammad Pezeshki
Kartik Ahuja
$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
Charles-Étienne Joseph
Boris Knyazev
Edouard Oyallon
Consistency-diversity-realism Pareto fronts of conditional image generative models
Pietro Astolfi
Marlene Careil
Melissa Hall
Oscar Mañas
Matthew J. Muckley
Jakob Verbeek
Michal Drozdzal
Building world models that accurately and comprehensively represent the real world is the utmost aspiration for conditional image generative… (voir plus) models as it would enable their use as world simulators. For these models to be successful world models, they should not only excel at image quality and prompt-image consistency but also ensure high representation diversity. However, current research in generative models mostly focuses on creative applications that are predominantly concerned with human preferences of image quality and aesthetics. We note that generative models have inference time mechanisms - or knobs - that allow the control of generation consistency, quality, and diversity. In this paper, we use state-of-the-art text-to-image and image-and-text-to-image models and their knobs to draw consistency-diversity-realism Pareto fronts that provide a holistic view on consistency-diversity-realism multi-objective. Our experiments suggest that realism and consistency can both be improved simultaneously; however there exists a clear tradeoff between realism/consistency and diversity. By looking at Pareto optimal points, we note that earlier models are better at representation diversity and worse in consistency/realism, and more recent models excel in consistency/realism while decreasing significantly the representation diversity. By computing Pareto fronts on a geodiverse dataset, we find that the first version of latent diffusion models tends to perform better than more recent models in all axes of evaluation, and there exist pronounced consistency-diversity-realism disparities between geographical regions. Overall, our analysis clearly shows that there is no best model and the choice of model should be determined by the downstream application. With this analysis, we invite the research community to consider Pareto fronts as an analytical tool to measure progress towards world models.
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Controlling Forgetting with Test-Time Data in Continual Learning
Vaibhav Singh
Rahaf Aljundi
Foundational vision-language models excel in various tasks but require updates as new tasks or domains emerge. Current Continual Learning (C… (voir plus)L) methods, which focus on supervised training, often suffer from significant forgetting, performing worse than the original models in zero-shot scenarios. This work proposes leveraging test-time, unsupervised data in a self-supervised manner to refresh the model’s memory of previously learned tasks, minimizing forgetting without additional labeling. By introducing a student-teacher framework with gradient-based sparse parameter updates, the approach enhances performance on prior tasks and reduces reliance on offline memory buffers, effectively improving continual learning outcomes.