Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Simulating weighted automata over sequences and trees with transformers
Report Noisy Max and Above Threshold are two classical differentially private (DP) selection mechanisms. Their output is obtained by adding … (voir plus)noise to a sequence of low-sensitivity queries and reporting the identity of the query whose (noisy) answer satisfies a certain condition. Pure DP guarantees for these mechanisms are easy to obtain when Laplace noise is added to the queries. On the other hand, when instantiated using Gaussian noise, standard analyses only yield approximate DP guarantees despite the fact that the outputs of these mechanisms lie in a discrete space. In this work, we revisit the analysis of Report Noisy Max and Above Threshold with Gaussian noise and show that, under the additional assumption that the underlying queries are bounded, it is possible to provide pure ex-ante DP bounds for Report Noisy Max and pure ex-post DP bounds for Above Threshold. The resulting bounds are tight and depend on closed-form expressions that can be numerically evaluated using standard methods. Empirically we find these lead to tighter privacy accounting in the high privacy, low data regime. Further, we propose a simple privacy filter for composing pure ex-post DP guarantees, and use it to derive a fully adaptive Gaussian Sparse Vector Technique mechanism. Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our Sparse Vector Technique is practically competitive with previous approaches and requires less hyper-parameter tuning.
2024-04-18
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics (publié)
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
This paper describes the Ubenwa CryCeleb dataset - a labeled collection of infant cries - and the accompanying CryCeleb 2023 task, which is … (voir plus)a public speaker verification challenge based on cry sounds. We released more than 6 hours of manually segmented cry sounds from 786 newborns for academic use, aiming to encourage research in infant cry analysis. The inaugural public competition attracted 59 participants, 11 of whom improved the baseline performance. The top-performing system achieved a significant improvement scoring 25.8% equal error rate, which is still far from the performance of state-of-the-art adult speaker verification systems. Therefore, we believe there is room for further research on this dataset, potentially extending beyond the verification task.
2024-04-14
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)