scMoE: single-cell mixture of experts for learning hierarchical, cell-type-specific, and interpretable representations from heterogeneous scRNA-seq data
Michael Huang
Advancements in single-cell transcriptomics methods have resulted in a wealth of single-cell RNA sequencing (scRNA-seq) data. Methods to lea… (see more)rn cell representation from atlas-level scRNA-seq data across diverse tissues can shed light into cell functions implicated in diseases such as cancer. However, integrating large-scale and heterogeneous scRNA-seq data is challenging due to the disparity of cell-types and batch effects. We present single-cell Mixture of Expert (scMoE), a hierarchical mixture of experts single-cell topic model. Our key contributions are the cell-type specific experts, which explicitly aligns topics with cell-types, and the integration of hierarchical cell-type lineages and domain knowledge. scMoE is both transferable and highly interpretable. We benchmarked our scMoE’s performance on 9 single-cell RNA-seq datasets for clustering and 3 simulated spatial datasets for spatial deconvolution. We additionally show that our model, using single-cell references, yields meaningful biological results by deconvolving 3 cancer bulk RNA-seq datasets and 2 spatial transcriptomics datasets. scMoE is able to identify cell-types of survival importance, find cancer subtype specific deconvolutional patterns, and capture meaningful spatially distinct cell-type distributions.
Understanding Adam Requires Better Rotation Dependent Assumptions
Lucas Maes
Tianyue H. Zhang
Alexia Jolicoeur-Martineau
Damien Scieur
Charles Guille-Escuret
Despite its widespread adoption, Adam's advantage over Stochastic Gradient Descent (SGD) lacks a comprehensive theoretical explanation. This… (see more) paper investigates Adam's sensitivity to rotations of the parameter space. We demonstrate that Adam's performance in training transformers degrades under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis. This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam's advantages theoretically. To better understand the rotation-dependent properties that benefit Adam, we also identify structured rotations that preserve or even enhance its empirical performance. We then examine the rotation-dependent assumptions in the literature, evaluating their adequacy in explaining Adam's behavior across various rotation types. This work highlights the need for new, rotation-dependent theoretical frameworks to fully understand Adam's empirical success in modern machine learning tasks.
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
ConvNTC: Convolutional neural tensor completion for predicting the disease-related miRNA pairs and cell-related drug pairs
Pei Liu
Xiao Liang
Jiawei Luo
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Hugo Berard
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Hugo Berard
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
The Roles of Neural Networks in Language Acquisition
Masoud Jasbi
How can modern neural networks like language models be useful to the field of language acquisition, and more broadly cognitive science, if t… (see more)hey are not a priori designed to be cognitive models? As developments towards natural language understanding and generation have improved leaps and bounds, with models like GPT‐4, the question of how they can inform our understanding of human language acquisition has re‐emerged. As such, it is critical to examine how in practice linking hypotheses between models and human learners can be safely established. To address these questions, we propose a model taxonomy, including four modelling approaches, each having differing goals, from exploratory hypothesis generation to hypothesis differentiation and testing. We show how the goals of these approaches align with the overarching goals of science and linguistics by connecting our taxonomy to the realist versus instrumentalist approaches in philosophy of science. We survey recent work having adopted each of our modelling approaches and address the importance of computational modelling in language acquisition studies.
The Roles of Neural Networks in Language Acquisition
Masoud Jasbi
How can modern neural networks like language models be useful to the field of language acquisition, and more broadly cognitive science, if t… (see more)hey are not a priori designed to be cognitive models? As developments towards natural language understanding and generation have improved leaps and bounds, with models like GPT‐4, the question of how they can inform our understanding of human language acquisition has re‐emerged. As such, it is critical to examine how in practice linking hypotheses between models and human learners can be safely established. To address these questions, we propose a model taxonomy, including four modelling approaches, each having differing goals, from exploratory hypothesis generation to hypothesis differentiation and testing. We show how the goals of these approaches align with the overarching goals of science and linguistics by connecting our taxonomy to the realist versus instrumentalist approaches in philosophy of science. We survey recent work having adopted each of our modelling approaches and address the importance of computational modelling in language acquisition studies.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
Michael Noukhovitch
Shengyi Huang
Sophie Xhonneux
Arian Hosseini
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling wi… (see more)th a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
Minimally Invasive Morphology Adaptation via Parameter Efficient Fine-Tuning
Michael Przystupa
Hongyao Tang
Mariano Phielipp
Santiago Miret
Martin Jägersand
Learning reinforcement learning policies to control individual robots is often computationally non-economical because minor variations in ro… (see more)bot morphology (e.g. dynamics or number of limbs) can negatively impact policy performance. This limitation has motivated morphology agnostic policy learning, in which a monolithic deep learning policy learns to generalize between robotic morphologies. Unfortunately, these policies still have sub-optimal zero-shot performance compared to end-to-end finetuning on target morphologies. This limitation has ramifications in practical robotic applications, as online finetuning large neural networks can require immense computation. In this work, we investigate \textit{parameter efficient finetuning} techniques to specialize morphology-agnostic policies to a target robot that minimizes the number of learnable parameters adapted during online learning. We compare direct finetuning, which update subsets of the base model parameters, and input-learnable approaches, which add additional parameters to manipulate inputs passed to the base model. Our analysis concludes that tuning relatively few parameters (0.01\% of the base model) can measurably improve policy performance over zero shot. These results serve a prescriptive purpose for future research for which scenarios certain PEFT approaches are best suited for adapting policy's to new robotic morphologies.
Modulation of leg trajectory by transcranial magnetic stimulation during walking
H. Bourgeois
Rose Guay-Hottin
E.-M. Meftah
M. Martinez
D. Barthélemy
The primary motor cortex is involved in initiation and adaptive control of locomotion. However, the role of the motor cortex in controlling … (see more)gait trajectories remains unclear. In animals, cortical neuromodulation allows for precise control of step height. We hypothesized that a similar control framework applies to humans, whereby cortical stimulation would primarily increase foot elevation. Transcranial magnetic stimulation (TMS) was applied over the motor cortex to assess the involvement of the corticospinal tract over the limb trajectory during human walking. Eight healthy adults (aged 20-32 years) participated in treadmill walking at 1.5 km/h. TMS was applied over the left motor cortex at an intensity of 120% of the threshold to elicit a dorsiflexion of the right ankle during the swing phase of gait. Electromyographic (EMG) measurements and three-dimensional (3D) lower limb kinematics were collected. When delivered during the early swing phase, TMS led to a significant increase in the maximum height of the right toe by a mean of 40.7% ± 14.9% (25.6mm ± 9.4 mm, p = 0.0352) and knee height by 57.8%± 16.8%; (32mm ± 9.3 mm; p = 0.008) across participants. These findings indicate that TMS can influence limb trajectory during walking, highlighting its potential as a tool for studying cortical control of locomotion.