Deep Learning. Das umfassende Handbuch
Visual Reasoning with Multi-hop Feature Modulation
Florian Strub
Mathieu Seurin
Ethan Perez
Harm de Vries
Jérémie Mary
P. Preux
Olivier Pietquin
Automatic differentiation in ML: Where we are and where we should be going
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
We review the current state of automatic differentiation (AD) for array programming in machine learning (ML), including the different approa… (voir plus)ches such as operator overloading (OO) and source transformation (ST) used for AD, graph-based intermediate representations for programs, and source languages. Based on these insights, we introduce a new graph-based intermediate representation (IR) which specifically aims to efficiently support fully-general AD for array programming. Unlike existing dataflow programming representations in ML frameworks, our IR naturally supports function calls, higher-order functions and recursion, making ML models easier to implement. The ability to represent closures allows us to perform AD using ST without a tape, making the resulting derivative (adjoint) program amenable to ahead-of-time optimization using tools from functional language compilers, and enabling higher-order derivatives. Lastly, we introduce a proof of concept compiler toolchain called Myia which uses a subset of Python as a front end.
BanditSum: Extractive Summarization as a Contextual Bandit
Yue Dong
Yikang Shen
Eric Crawford
Herke van Hoof
In this work, we propose a novel method for training neural networks to perform single-document extractive summarization without heuristical… (voir plus)ly-generated extractive labels. We call our approach BanditSum as it treats extractive summarization as a contextual bandit (CB) problem, where the model receives a document to summarize (the context), and chooses a sequence of sentences to include in the summary (the action). A policy gradient reinforcement learning algorithm is used to train the model to select sequences of sentences that maximize ROUGE score. We perform a series of experiments demonstrating that BanditSum is able to achieve ROUGE scores that are better than or comparable to the state-of-the-art for extractive summarization, and converges using significantly fewer update steps than competing approaches. In addition, we show empirically that BanditSum performs significantly better than competing approaches when good summary sentences appear late in the source document.
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang
Peng Qi
Saizheng Zhang
William W. Cohen
Russ Salakhutdinov
Christopher D Manning
Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We int… (voir plus)roduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems’ ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
A Knowledge Hunting Framework for Common Sense Reasoning
Ali Emami
Noelia De La Cruz
Adam Trischler
Kaheer Suleman
We introduce an automatic system that achieves state-of-the-art results on the Winograd Schema Challenge (WSC), a common sense reasoning tas… (voir plus)k that requires diverse, complex forms of inference and knowledge. Our method uses a knowledge hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine, then extracts and classifies knowledge from the returned results and weighs them to make a resolution. Our approach improves F1 performance on the full WSC by 0.21 over the previous best and represents the first system to exceed 0.5 F1. We further demonstrate that the approach is competitive on the Choice of Plausible Alternatives (COPA) task, which suggests that it is generally applicable.
Introduction to NIPS 2017 Competition Track
Sergio Escalera
Markus Weimer
Mikhail Burtsev
Valentin Malykh
Varvara Logacheva
Ryan Lowe
Iulian V. Serban
Alexander Rudnicky
Alan W. Black
Shrimai Prabhumoye
Łukasz Kidziński
Sharada Prasanna Mohanty
Carmichael F. Ong
Jennifer L. Hicks
Sergey Levine
Marcel Salathé
Scott Delp
Iker Huerga
Alexander Grigorenko … (voir 19 de plus)
Leifur Thorbergsson
Anasuya Das
Kyla Nemitz
Jenna Sandker
Stephen King
Alexander S. Ecker
Leon A. Gatys
Matthias Bethge
Jordan Boyd-Graber
Shi Feng
Pedro Rodriguez
Mohit Iyyer
He He
Hal Daumé III
Sean McGregor
Amir Banifatemi
Alexey Kurakin
Ian G Goodfellow
Samy Bengio
The First Conversational Intelligence Challenge
Mikhail Burtsev
Varvara Logacheva
Valentin Malykh
Iulian V. Serban
Ryan Lowe
Shrimai Prabhumoye
Alan W. Black
Alexander Rudnicky
Deep Graph Infomax
Petar Veličković
William Fedus
William L. Hamilton
Pietro Lio
Deep Graph Infomax
Petar Veličković
William Fedus
William L. Hamilton
Pietro Lio
Modeling the Long Term Future in Model-Based Reinforcement Learning
Nan Rosemary Ke
Amanpreet Singh
Ahmed Touati
Anirudh Goyal
Devi Parikh
Dhruv Batra
Probabilistic Planning with Sequential Monte Carlo methods
Alexandre Piché
Valentin Thomas
Cyril Ibrahim