''COGITO in Space'': a thought experiment in exo-neurobiology
Daniela de Paulis
Stephen Whitmarsh
Robert Oostenveld
Michael Sanders
SeroTracker: a global SARS-CoV-2 seroprevalence dashboard
Rahul K. Arora
Abel Joseph
Jordan Van Wyk
Simona Rocco
Austin Atmaja
Ewan May
Tingting Yan
Niklas Bobrovitz
Jonathan Chevrier
Matthew P. Cheng
Tyler Williamson
Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
We approach the problem of implicit regularization in deep learning from a geometrical viewpoint. We highlight a possible regularization eff… (voir plus)ect induced by a dynamical alignment of the neural tangent features introduced by Jacot et al, along a small number of task-relevant directions. By extrapolating a new analysis of Rademacher complexity bounds in linear models, we propose and study a new heuristic complexity measure for neural networks which captures this phenomenon, in terms of sequences of tangent kernel classes along in the learning trajectories.
BDD-based optimization for the quadratic stable set problem
Jaime E. González
Andr'e Augusto Cire
Andrea Lodi
Louis-Martin Rousseau
BDD-based optimization for the quadratic stable set problem
Jaime E. González
Andr'e Augusto Cire
Andrea Lodi
Louis-Martin Rousseau
Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists
Hao-Ting Wang
Jonathan Smallwood
Janaina Mourão Miranda
Cedric Huchuan Xia
Theodore D. Satterthwaite
Danielle S. Bassett
Optimal Local and Remote Controllers With Unreliable Uplink Channels: An Elementary Proof
Mohammad Afshari
Recently, a model of a decentralized control system with local and remote controllers connected over unreliable channels was presented in [… (voir plus)1]. The model has a nonclassical information structure that is not partially nested. Nonetheless, it is shown in [1] that the optimal control strategies are linear functions of the state estimate (which is a nonlinear function of the observations). Their proof is based on a fairly sophisticated dynamic programming argument. In this article, we present an alternative and elementary proof of the result which uses common information-based conditional independence and completion of squares.
Precision, Equity, and Public Health and Epidemiology Informatics – A Scoping Review
Renewal Monte Carlo: Renewal Theory-Based Reinforcement Learning
Jayakumar Subramanian
An online reinforcement learning algorithm called renewal Monte Carlo (RMC) is presented. RMC works for infinite horizon Markov decision pro… (voir plus)cesses with a designated start state. RMC is a Monte Carlo algorithm that retains the key advantages of Monte Carlo—viz., simplicity, ease of implementation, and low bias—while circumventing the main drawbacks of Monte Carlo—viz., high variance and delayed updates. Given a parameterized policy
Inferring disease subtypes from clusters in explanation space
Marc-Andre Schulz
Matt Chapman-Rounds
Manisha Verma
Konstantinos Georgatzis
Deriving Differential Target Propagation from Iterating Approximate Inverses