Associations Between Relative Morning Blood Pressure, Cerebral Blood Flow, and Memory in Older Adults Treated and Controlled for Hypertension
Adrián Noriega de la Colina
Atef Badji
Marie-Christine Robitaille-Grou
Christine Gagnon
Tommy Boshkovski
Maxime Lamarre-cliche
Sven Joubert
Claudine J. Gauthier
Louis Bherer
Hélène Girouard
Supplemental Digital Content is available in the text. Hypertension, elevated morning blood pressure (BP) surges, and circadian BP variabili… (voir plus)ty constitute risk factors for cerebrovascular events. Nevertheless, while evidence indicates that hypertension is associated with cognitive dysfunctions, the link between BP variability and cognitive performance during aging is not clear. The purpose of this study is to determine the interaction between relative morning BP, cerebral blood flow (CBF) levels, and cognitive performance in hypertensive older adults with controlled BP under antihypertensive treatment. Eighty-four participants aged between 60 and 75 years old were separated into normotensive (n=51) and hypertensive (n=33) groups and underwent 24-hour ambulatory BP monitoring. They were also examined for CBF in the gray matter (CBF-GM) by magnetic resonance imaging and 5 cognitive domains: global cognition, working memory, episodic memory, processing speed, and executive functions. There was no difference in cognitive performance and CBF between normotensive and controlled hypertensive participants. Through a sensitivity analysis, we identified that, among relative morning BP variables, the best fit for CBF values in this cohort was the morning-evening difference in BP. The relative morning BP was negatively associated with CBF-GM in these hypertensive older adults only. In turn, CBF-GM levels were negatively associated with working and episodic memory scores in hypertensive older adults. This is the first extended study demonstrating an association between high relative morning BP and lower levels of CBF-GM, including the further impact of CBF-GM levels on the cognitive performance of specific domains in a community-based cohort of older adults with hypertension.
Loneliness and Neurocognitive Aging
R. Nathan Spreng
Mapping gene transcription and neurocognition across human neocortex
Justine Y. Hansen
Ross D Markello
Jacob W. Vogel
Jakob Seidlitz
Bratislav Mišić
Evaluating the Integration of One Health in Surveillance Systems for Antimicrobial Use and Resistance: A Conceptual Framework
Cécile Aenishaenslin
Barbara Häsler
André Ravel
E. Jane Parmley
Sarah Mediouni
Houda Bennani
Katharina D. C. Stärk
It is now widely acknowledged that surveillance of antimicrobial resistance (AMR) must adopt a “One Health” (OH) approach to successfull… (voir plus)y address the significant threats this global public health issue poses to humans, animals, and the environment. While many protocols exist for the evaluation of surveillance, the specific aspect of the integration of a OH approach into surveillance systems for AMR and antimicrobial Use (AMU), suffers from a lack of common and accepted guidelines and metrics for its monitoring and evaluation functions. This article presents a conceptual framework to evaluate the integration of OH in surveillance systems for AMR and AMU, named the Integrated Surveillance System Evaluation framework (ISSE framework). The ISSE framework aims to assist stakeholders and researchers who design an overall evaluation plan to select the relevant evaluation questions and tools. The framework was developed in partnership with the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). It consists of five evaluation components, which consider the capacity of the system to: [1] integrate a OH approach, [2] produce OH information and expertise, [3] generate actionable knowledge, [4] influence decision-making, and [5] positively impact outcomes. For each component, a set of evaluation questions is defined, and links to other available evaluation tools are shown. The ISSE framework helps evaluators to systematically assess the different OH aspects of a surveillance system, to gain comprehensive information on the performance and value of these integrated efforts, and to use the evaluation results to refine and improve the surveillance of AMR and AMU globally.
Beyond Correlation versus Causation: Multi-brain Neuroscience Needs Explanation
Quentin Moreau
Factors influencing consumer choice: a study of apparel and sustainable cues from Canadian and Indian consumers’ perspectives
Osmud Rahman
Devender Kharb
Intention estimation and controllable behaviour models for traffic merges
Takayasu Kumano
Yuji Yasui
This work focuses on decision making for automated driving vehicles in interaction rich scenarios like traffic merges in a flexibly assertiv… (voir plus)e yet safe manner. We propose a Q-learning based approach, that takes in active intention inferences as additional inputs besides the directly observed state inputs. The outputs of Q-function are processed to select a decision by a modulation function, which can control how assertively or defensively the agent behaves.
Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers
Alex Lamb
Anirudh Goyal
A. Slowik
Michael Curtis Mozer
Philippe Beaudoin
Feed-forward neural networks consist of a sequence of layers, in which each layer performs some processing on the information from the previ… (voir plus)ous layer. A downside to this approach is that each layer (or module, as multiple modules can operate in parallel) is tasked with processing the entire hidden state, rather than a particular part of the state which is most relevant for that module. Methods which only operate on a small number of input variables are an essential part of most programming languages, and they allow for improved modularity and code re-usability. Our proposed method, Neural Function Modules (NFM), aims to introduce the same structural capability into deep learning. Most of the work in the context of feed-forward networks combining top-down and bottom-up feedback is limited to classification problems. The key contribution of our work is to combine attention, sparsity, top-down and bottom-up feedback, in a flexible algorithm which, as we show, improves the results in standard classification, out-of-domain generalization, generative modeling, and learning representations in the context of reinforcement learning.
Quantum Tensor Networks, Stochastic Processes, and Weighted Automata
Siddarth Srinivasan
Sandesh M. Adhikary
Jacob Miller
Byron Boots
Modeling joint probability distributions over sequences has been studied from many perspectives. The physics community developed matrix prod… (voir plus)uct states, a tensor-train decomposition for probabilistic modeling, motivated by the need to tractably model many-body systems. But similar models have also been studied in the stochastic processes and weighted automata literature, with little work on how these bodies of work relate to each other. We address this gap by showing how stationary or uniform versions of popular quantum tensor network models have equivalent representations in the stochastic processes and weighted automata literature, in the limit of infinitely long sequences. We demonstrate several equivalence results between models used in these three communities: (i) uniform variants of matrix product states, Born machines and locally purified states from the quantum tensor networks literature, (ii) predictive state representations, hidden Markov models, norm-observable operator models and hidden quantum Markov models from the stochastic process literature,and (iii) stochastic weighted automata, probabilistic automata and quadratic automata from the formal languages literature. Such connections may open the door for results and methods developed in one area to be applied in another.
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
Issam Hadj Laradji
We propose a stochastic variant of the classical Polyak step-size (Polyak, 1987) commonly used in the subgradient method. Although computing… (voir plus) the Polyak step-size requires knowledge of the optimal function values, this information is readily available for typical modern machine learning applications. Consequently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD equipped with SPS in different settings, including strongly convex, convex and non-convex functions. Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size. We show that SPS is particularly effective when training over-parameterized models capable of interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the true solution at a fast rate without requiring the knowledge of any problem-dependent constants or additional computational overhead. We experimentally validate our theoretical results via extensive experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with SPS compared to state-of-the-art optimization methods when training over-parameterized models.
A Study of Condition Numbers for First-Order Optimization
Charles Guille-Escuret
Baptiste Goujaud
Manuela Girotti
[Strengthening the culture of public health surveillance and population health monitoring].
Arnaud Chiolero
St'ephane Cullati
Public health surveillance is the systematic and ongoing collection, analysis and interpretation of data to produce information useful for d… (voir plus)ecision-making. With the development of data science, surveillance methods are evolving through access to big data. More data does not automatically mean more information. For example, the massive amounts of data on Covid-19 was not easily transformed in useful information for decision-making. Further, data scientists have often difficulties to make their analyses useful for decision-making. For the implementation of evidence-based and data-driven public health practice, the culture of public health surveillance and population health monitoring needs to be strengthened.