Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Halting Time is Predictable for Large Models: A Universality Property and Average-Case Analysis
Two-sided markets have become increasingly more important during the last years, mostly because of their numerous applications in housing, l… (voir plus)abor and dating. Consumer-supplier matching platforms pose several technical challenges, specially due to the trade-off between recommending suitable suppliers to consumers and avoiding collisions among consumers' preferences.
In this work, we study a general version of the two-sided sequential matching model introduced by Ashlagi et al. (2019). The setting is the following: we (the platform) offer a menu of suppliers to each consumer. Then, every consumer selects, simultaneously and independently, to match with a supplier or to remain unmatched. Suppliers observe the subset of consumers that selected them, and choose either to match a consumer or leave the system. Finally, a match takes place if both the consumer and the supplier sequentially select each other. Each agent's behavior is probabilistic and determined by a regular discrete choice model. Our objective is to choose an assortment family that maximizes the expected cardinality of the matching. Given the computational complexity of the problem, we show several provable guarantees for the general model, which in particular, significantly improve the approximation factors previously obtained.
Abstract Purpose A large number of people living with a chronic disability wait a long time to access publicly funded rehabilitation service… (voir plus)s such as Augmentative and Alternative Communication (AAC) services, and there is no standardized tool to prioritize these patients. We aimed to develop a prioritization tool to improve the organization and access to the care for this population. Methods In this sequential mixed methods study, we began with a qualitative phase in which we conducted semi-structured interviews with 14 stakeholders including patients, their caregivers, and AAC service providers in Quebec City, Canada to gather their ideas about prioritization criteria. Then, during a half-day consensus group meeting with stakeholders, using a consensus-seeking technique (i.e. Technique for Research of Information by Animation of a Group of Experts), we reached consensus on the most important prioritization criteria. These criteria informed the quantitative phase in which used an electronic questionnaire to collect stakeholders’ views regarding the relative weights for each of the selected criteria. We analyzed these data using a hybrid quantitative method called group based fuzzy analytical hierarchy process, to obtain the importance weights of the selected eight criteria. Results Analyses of the interviews revealed 48 criteria. Collectively, the stakeholders reached consensus on eight criteria, and through the electronic questionnaire they defined the selected criteria’s importance weights. The selected eight prioritization criteria and their importance weights are: person’s safety (weight: 0.274), risks development potential (weight: 0.144), psychological well-being (weight: 0.140), physical well-being (weight: 0.124), life prognosis (weight: 0.106), possible impact on social environment (weight: 0.085), interpersonal relationships (weight: 0.073), and responsibilities and social role (weight: 0.054). Conclusion In this study, we co-developed a prioritization decision tool with the key stakeholders for prioritization of patients who are referred to AAC services in rehabilitation settings. IMPLICATIONS FOR REHABILIATION Studies in Canada have shown that people in Canada with a need for rehabilitation services are not receiving publicly available services in a timely manner. There is no standardized tool for the prioritization of AAC patients. In this mixed methods study, we co-developed a prioritization tool with key stakeholders for prioritization of patients who are referred to AAC services in a rehabilitation center in Quebec, Canada.
2020-06-05
Disability and Rehabilitation: Assistive Technology (published)