Counterexamples on the Monotonicity of Delay Optimal Strategies for Energy Harvesting Transmitters
Borna Sayedana
We consider cross-layer design of delay optimal transmission strategies for energy harvesting transmitters where the data and energy arrival… (voir plus) processes are stochastic. Using Markov decision theory, we show that the value function is weakly increasing in the queue state and weakly decreasing in the battery state. It is natural to expect that the delay optimal policy should be weakly increasing in the queue and battery states. We show via counterexamples that this is not the case. In fact, we show that for some sample scenarios the delay optimal policy may perform 5–13% better than the best monotone policy.
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
Wenyu Du
Zhouhan Lin
Yikang Shen
Yue Sara Zhang
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (voir plus)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
Assya Trofimov
Joseph Paul Cohen
Claude Perreault
Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks
Maxime Wabartha
Vincent Francois-Lavet
By virtue of their expressive power, neural networks (NNs) are well suited to fitting large, complex datasets, yet they are also known to … (voir plus)produce similar predictions for points outside the training distribution. As such, they are, like humans, under the influence of the Black Swan theory: models tend to be extremely "surprised" by rare events, leading to potentially disastrous consequences, while justifying these same events in hindsight. To avoid this pitfall, we introduce DENN, an ensemble approach building a set of Diversely Extrapolated Neural Networks that fits the training data and is able to generalize more diversely when extrapolating to novel data points. This leads DENN to output highly uncertain predictions for unexpected inputs. We achieve this by adding a diversity term in the loss function used to train the model, computed at specific inputs. We first illustrate the usefulness of the method on a low-dimensional regression problem. Then, we show how the loss can be adapted to tackle anomaly detection during classification, as well as safe imitation learning problems.
Hemispheric specialization within the inferior parietal lobe across cognitive domains
Ole Numssen
Gesa Hartwigsen
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social … (voir plus)cognition that define human interactions. Its putative domain-global role appears to tie into poorly understood functional differences between both hemispheres. Across attentional, semantic, and social cognitive experiments, our study explored hemispheric specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While each anterior IPL subregion was engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated lateralization effects within the IPL support some of the most distinctive human mental capacities.
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability (Extended Abstract)
Vincent Francois-Lavet
Damien Ernst
Raphael Fonteneau
When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: … (voir plus)a term related to an asymptotic bias (suboptimality with unlimited data) and a term due to overfitting (additional suboptimality due to limited data). In the context of reinforcement learning with partial observability, this paper provides an analysis of the tradeoff between these two error sources. In particular, our theoretical analysis formally characterizes how a smaller state representation increases the asymptotic bias while decreasing the risk of overfitting.
Words Aren’t Enough, Their Order Matters: On the Robustness of Grounding Visual Referring Expressions
Arjun Reddy Akula
Spandana Gella
Yaser Al-Onaizan
Song-Chun Zhu
Visual referring expression recognition is a challenging task that requires natural language understanding in the context of an image. We cr… (voir plus)itically examine RefCOCOg, a standard benchmark for this task, using a human study and show that 83.7% of test instances do not require reasoning on linguistic structure, i.e., words are enough to identify the target object, the word order doesn’t matter. To measure the true progress of existing models, we split the test set into two sets, one which requires reasoning on linguistic structure and the other which doesn’t. Additionally, we create an out-of-distribution dataset Ref-Adv by asking crowdworkers to perturb in-domain examples such that the target object changes. Using these datasets, we empirically show that existing methods fail to exploit linguistic structure and are 12% to 23% lower in performance than the established progress for this task. We also propose two methods, one based on contrastive learning and the other based on multi-task learning, to increase the robustness of ViLBERT, the current state-of-the-art model for this task. Our datasets are publicly available at https://github.com/aws/aws-refcocog-adv.
Bringing proportional recovery into proportion: Bayesian modelling of post-stroke motor impairment.
Anna K. Bonkhoff
Thomas Hope
Adrian G Guggisberg
Rachel L Hawe
Sean P Dukelow
Anne K Rehme
Gereon R Fink
Christian Grefkes
Howard Bowman
Accurate predictions of motor impairment after stroke are of cardinal importance for the patient, clinician, and healthcare system. More tha… (voir plus)n 10 years ago, the proportional recovery rule was introduced by promising that high-fidelity predictions of recovery following stroke were based only on the initially lost motor function, at least for a specific fraction of patients. However, emerging evidence suggests that this recovery rule is subject to various confounds and may apply less universally than previously assumed. Here, we systematically revisited stroke outcome predictions by applying strategies to avoid confounds and fitting hierarchical Bayesian models. We jointly analysed 385 post-stroke trajectories from six separate studies-one of the largest overall datasets of upper limb motor recovery. We addressed confounding ceiling effects by introducing a subset approach and ensured correct model estimation through synthetic data simulations. Subsequently, we used model comparisons to assess the underlying nature of recovery within our empirical recovery data. The first model comparison, relying on the conventional fraction of patients called 'fitters', pointed to a combination of proportional to lost function and constant recovery. 'Proportional to lost' here describes the original notion of proportionality, indicating greater recovery in case of a more severe initial impairment. This combination explained only 32% of the variance in recovery, which is in stark contrast to previous reports of >80%. When instead analysing the complete spectrum of subjects, 'fitters' and 'non-fitters', a combination of proportional to spared function and constant recovery was favoured, implying a more significant improvement in case of more preserved function. Explained variance was at 53%. Therefore, our quantitative findings suggest that motor recovery post-stroke may exhibit some characteristics of proportionality. However, the variance explained was substantially reduced compared to what has previously been reported. This finding motivates future research moving beyond solely behaviour scores to explain stroke recovery and establish robust and discriminating single-subject predictions.
Medical Imaging with Deep Learning: MIDL 2020 - Short Paper Track
Ismail Ben Ayed
Marleen de Bruijne
Maxime Descoteaux
This compendium gathers all the accepted extended abstracts from the Third International Conference on Medical Imaging with Deep Learning (M… (voir plus)IDL 2020), held in Montreal, Canada, 6-9 July 2020. Note that only accepted extended abstracts are listed here, the Proceedings of the MIDL 2020 Full Paper Track are published in the Proceedings of Machine Learning Research (PMLR).
Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in Dynamical Systems
Anirudh Goyal
Alex Lamb
Phanideep Gampa
Philippe Beaudoin
Sergey Levine
Charles Blundell
Michael Curtis Mozer
Inherent privacy limitations of decentralized contact tracing apps
Daphne Ippolito
Richard Janda
Max Jarvie
Benjamin Prud'homme
Jean-François Rousseau
Abhinav Sharma
Yun William Yu
Shared and unique brain network features predict cognition, personality and mental health in childhood
Jianzhong Chen
Angela Tam
Valeria Kebets
Csaba Orban
Leon Qi
Leon Qi Rong Ooi
Scott Marek
Nico Dosenbach
Simon B. Eickhoff
Avram J. Holmes
B.T. Thomas Yeo
The manner through which individual differences in brain network organization track population-level behavioral variability is a fundamental… (voir plus) question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, the focus of most studies on single behavioral traits has come at the expense of capturing broader relationships across behaviors. Here, we utilized a large-scale dataset of 1858 typically developing children to estimate whole-brain functional network organization that is predictive of individual differences in cognition, impulsivity-related personality, and mental health during rest and task states. Predictive network features were distinct across the broad behavioral domains: cognition, personality and mental health. On the other hand, traits within each behavioral domain were predicted by highly similar network features. This is surprising given decades of research emphasizing that distinct brain networks support different mental processes. Although tasks are known to modulate the functional connectome, we found that predictive network features were similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood, yet are unique to different behavioral domains.