Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Counterexamples on the Monotonicity of Delay Optimal Strategies for Energy Harvesting Transmitters
We consider cross-layer design of delay optimal transmission strategies for energy harvesting transmitters where the data and energy arrival… (voir plus) processes are stochastic. Using Markov decision theory, we show that the value function is weakly increasing in the queue state and weakly decreasing in the battery state. It is natural to expect that the delay optimal policy should be weakly increasing in the queue and battery states. We show via counterexamples that this is not the case. In fact, we show that for some sample scenarios the delay optimal policy may perform 5–13% better than the best monotone policy.
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (voir plus)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
2020-07-01
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (publié)
By virtue of their expressive power, neural networks (NNs) are well suited to fitting large, complex datasets, yet they are also known to
… (voir plus)produce similar predictions for points outside the training distribution.
As such, they are, like humans, under the influence of the Black Swan theory: models tend to be extremely "surprised" by rare events, leading to potentially disastrous consequences, while justifying these same events in hindsight.
To avoid this pitfall, we introduce DENN, an ensemble approach building a set of Diversely Extrapolated Neural Networks that fits the training data and is able to generalize more diversely when extrapolating to novel data points.
This leads DENN to output highly uncertain predictions for unexpected inputs.
We achieve this by adding a diversity term in the loss function used to train the model, computed at specific inputs.
We first illustrate the usefulness of the method on a low-dimensional regression problem.
Then, we show how the loss can be adapted to tackle anomaly detection during classification, as well as safe imitation learning problems.
2020-07-01
International Joint Conference on Artificial Intelligence (publié)
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social … (voir plus)cognition that define human interactions. Its putative domain-global role appears to tie into poorly understood functional differences between both hemispheres. Across attentional, semantic, and social cognitive experiments, our study explored hemispheric specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While each anterior IPL subregion was engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated lateralization effects within the IPL support some of the most distinctive human mental capacities.
When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: … (voir plus)a term related to an asymptotic bias (suboptimality with unlimited data) and a term due to overfitting (additional suboptimality due to limited data). In the context of reinforcement learning with partial observability, this paper provides an analysis of the tradeoff between these two error sources. In particular, our theoretical analysis formally characterizes how a smaller state representation increases the asymptotic bias while decreasing the risk of overfitting.
2020-07-01
International Joint Conference on Artificial Intelligence (publié)
Visual referring expression recognition is a challenging task that requires natural language understanding in the context of an image. We cr… (voir plus)itically examine RefCOCOg, a standard benchmark for this task, using a human study and show that 83.7% of test instances do not require reasoning on linguistic structure, i.e., words are enough to identify the target object, the word order doesn’t matter. To measure the true progress of existing models, we split the test set into two sets, one which requires reasoning on linguistic structure and the other which doesn’t. Additionally, we create an out-of-distribution dataset Ref-Adv by asking crowdworkers to perturb in-domain examples such that the target object changes. Using these datasets, we empirically show that existing methods fail to exploit linguistic structure and are 12% to 23% lower in performance than the established progress for this task. We also propose two methods, one based on contrastive learning and the other based on multi-task learning, to increase the robustness of ViLBERT, the current state-of-the-art model for this task. Our datasets are publicly available at https://github.com/aws/aws-refcocog-adv.
2020-07-01
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (publié)
Accurate predictions of motor impairment after stroke are of cardinal importance for the patient, clinician, and healthcare system. More tha… (voir plus)n 10 years ago, the proportional recovery rule was introduced by promising that high-fidelity predictions of recovery following stroke were based only on the initially lost motor function, at least for a specific fraction of patients. However, emerging evidence suggests that this recovery rule is subject to various confounds and may apply less universally than previously assumed. Here, we systematically revisited stroke outcome predictions by applying strategies to avoid confounds and fitting hierarchical Bayesian models. We jointly analysed 385 post-stroke trajectories from six separate studies-one of the largest overall datasets of upper limb motor recovery. We addressed confounding ceiling effects by introducing a subset approach and ensured correct model estimation through synthetic data simulations. Subsequently, we used model comparisons to assess the underlying nature of recovery within our empirical recovery data. The first model comparison, relying on the conventional fraction of patients called 'fitters', pointed to a combination of proportional to lost function and constant recovery. 'Proportional to lost' here describes the original notion of proportionality, indicating greater recovery in case of a more severe initial impairment. This combination explained only 32% of the variance in recovery, which is in stark contrast to previous reports of >80%. When instead analysing the complete spectrum of subjects, 'fitters' and 'non-fitters', a combination of proportional to spared function and constant recovery was favoured, implying a more significant improvement in case of more preserved function. Explained variance was at 53%. Therefore, our quantitative findings suggest that motor recovery post-stroke may exhibit some characteristics of proportionality. However, the variance explained was substantially reduced compared to what has previously been reported. This finding motivates future research moving beyond solely behaviour scores to explain stroke recovery and establish robust and discriminating single-subject predictions.
This compendium gathers all the accepted extended abstracts from the Third International Conference on Medical Imaging with Deep Learning (M… (voir plus)IDL 2020), held in Montreal, Canada, 6-9 July 2020. Note that only accepted extended abstracts are listed here, the Proceedings of the MIDL 2020 Full Paper Track are published in the Proceedings of Machine Learning Research (PMLR).
The manner through which individual differences in brain network organization track population-level behavioral variability is a fundamental… (voir plus) question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, the focus of most studies on single behavioral traits has come at the expense of capturing broader relationships across behaviors. Here, we utilized a large-scale dataset of 1858 typically developing children to estimate whole-brain functional network organization that is predictive of individual differences in cognition, impulsivity-related personality, and mental health during rest and task states. Predictive network features were distinct across the broad behavioral domains: cognition, personality and mental health. On the other hand, traits within each behavioral domain were predicted by highly similar network features. This is surprising given decades of research emphasizing that distinct brain networks support different mental processes. Although tasks are known to modulate the functional connectome, we found that predictive network features were similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood, yet are unique to different behavioral domains.