We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
A Study of Condition Numbers for First-Order Optimization
The study of first-order optimization algorithms (FOA) typically starts with assumptions on the objective functions, most commonly smoothnes… (see more)s and strong convexity. These metrics are used to tune the hyperparameters of FOA. We introduce a class of perturbations quantified via a new norm, called *-norm. We show that adding a small perturbation to the objective function has an equivalently small impact on the behavior of any FOA, which suggests that it should have a minor impact on the tuning of the algorithm. However, we show that smoothness and strong convexity can be heavily impacted by arbitrarily small perturbations, leading to excessively conservative tunings and convergence issues. In view of these observations, we propose a notion of continuity of the metrics, which is essential for a robust tuning strategy. Since smoothness and strong convexity are not continuous, we propose a comprehensive study of existing alternative metrics which we prove to be continuous. We describe their mutual relations and provide their guaranteed convergence rates for the Gradient Descent algorithm accordingly tuned. Finally we discuss how our work impacts the theoretical understanding of FOA and their performances.
The SARS-CoV-2 pandemic is one of the greatest global medical and social challenges that have emerged in recent history. Human coronavirus s… (see more)trains discovered during previous SARS outbreaks have been hypothesized to pass from bats to humans using intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The discovery of an intermediate host of SARS-CoV-2 and the identification of specific mechanism of its emergence in humans are topics of primary evolutionary importance. In this study we investigate the evolutionary patterns of 11 main genes of SARS-CoV-2. Previous studies suggested that the genome of SARS-CoV-2 is highly similar to the horseshoe bat coronavirus RaTG13 for most of the genes and to some Malayan pangolin coronavirus (CoV) strains for the receptor binding (RB) domain of the spike protein. We provide a detailed list of statistically significant horizontal gene transfer and recombination events (both intergenic and intragenic) inferred for each of 11 main genes of the SARS-CoV-2 genome. Our analysis reveals that two continuous regions of genes S and N of SARS-CoV-2 may result from intragenic recombination between RaTG13 and Guangdong (GD) Pangolin CoVs. Statistically significant gene transfer-recombination events between RaTG13 and GD Pangolin CoV have been identified in region [1215–1425] of gene S and region [534–727] of gene N. Moreover, some statistically significant recombination events between the ancestors of SARS-CoV-2, RaTG13, GD Pangolin CoV and bat CoV ZC45-ZXC21 coronaviruses have been identified in genes ORF1ab, S, ORF3a, ORF7a, ORF8 and N. Furthermore, topology-based clustering of gene trees inferred for 25 CoV organisms revealed a three-way evolution of coronavirus genes, with gene phylogenies of ORF1ab, S and N forming the first cluster, gene phylogenies of ORF3a, E, M, ORF6, ORF7a, ORF7b and ORF8 forming the second cluster, and phylogeny of gene ORF10 forming the third cluster. The results of our horizontal gene transfer and recombination analysis suggest that SARS-CoV-2 could not only be a chimera virus resulting from recombination of the bat RaTG13 and Guangdong pangolin coronaviruses but also a close relative of the bat CoV ZC45 and ZXC21 strains. They also indicate that a GD pangolin may be an intermediate host of this dangerous virus.
The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model per… (see more)formance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlaps that occur between these corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the pretraining corpora on which state-of-the-art models are trained, and that a significant drop in classification accuracy occurs when models are evaluated on instances with minimal overlap. Based on these results, we provide the WSC-Web dataset, consisting of over 60k pronoun disambiguation problems scraped from web data, being both the largest corpus to date, and having a significantly lower proportion of overlaps with current pretraining corpora.
2020-12-01
Proceedings of the 28th International Conference on Computational Linguistics (published)
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, se… (see more)mantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.
2020-12-01
Proceedings of the 28th International Conference on Computational Linguistics (published)
Abstract In this paper, we propose LexSub, a novel approach towards unifying lexical and distributional semantics. We inject knowledge about… (see more) lexical-semantic relations into distributional word embeddings by defining subspaces of the distributional vector space in which a lexical relation should hold. Our framework can handle symmetric attract and repel relations (e.g., synonymy and antonymy, respectively), as well as asymmetric relations (e.g., hypernymy and meronomy). In a suite of intrinsic benchmarks, we show that our model outperforms previous approaches on relatedness tasks and on hypernymy classification and detection, while being competitive on word similarity tasks. It also outperforms previous systems on extrinsic classification tasks that benefit from exploiting lexical relational cues. We perform a series of analyses to understand the behaviors of our model.1 Code available at https://github.com/aishikchakraborty/LexSub.
2020-12-01
Transactions of the Association for Computational Linguistics (published)
La pandémie actuelle a provoqué une onde de choc dont les conséquences se font sentir dans tous les aspects de notre vie. Alors que la sa… (see more)nté physique a été généralement au cœur de l’attention scientifique et politique, il est devenu clair que la pandémie de COVID-19 a influé significativement sur la santé mentale de nombreux individus. Plus encore, elle aurait accentué les fragilités déjà existantes dans nos systèmes de santé mentale. Souvent moins financé ou soutenu que la santé physique, le domaine de la santé mentale pourrait-il bénéficier d’innovations en intelligence artificielle en période de pandémie ? Et si oui comment ? Que vous soyez développeur.e.s en IA, chercheur.e.s ou entrepreneur.e.s, ce document vise à vous fournir une synthèse des pistes d’actions et des ressources pour prévenir les principaux risques éthiques liés au développement d’applications d’IA dans le champ de la santé mentale. Pour illustrer ces principes, ce document propose de découvrir quatre cas fictif, à visée réaliste, à partir desquels il vous sera proposé de porter attention aux enjeux éthiques potentiels dans cette situation, aux enjeux d’innovation responsable à envisager, aux pistes d’action possibles inspirées de la liste de contrôle (Protocole Canadien conçu pour favoriser une utilisation responsable de l’IA en santé mentale et prévention du suicide, Mörch et al., 2020), aux ressources pratiques et à certains enjeux juridiques pertinents. Ce document a été élaboré par Carl-Maria Mörch, PhD, Algora Lab, Université de Montréal, Observatoire International sur les impacts sociétaux de l’Intelligence Artificielle et du Numérique (OBVIA), Mila – Institut Québécois d’Intelligence Artificielle, avec les contributions de Pascale Lehoux, Marc-Antoine Dilhac, Catherine Régis et Xavier Dionne.
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles (rather than an encyclopaedic list of … (see more)heuristics). If that hypothesis was correct, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behaviour of complex systems like brains, and substantial computation might be needed to simulate human-like intelligence. This hypothesis would suggest that studying the kind of inductive biases that humans and animals exploit could help both clarify these principles and provide inspiration for AI research and neuroscience theories. Deep learning already exploits several key inductive biases, and this work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing. The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans’ abilities in terms of flexible out-of-distribution and systematic generalization, which is currently an area where a large gap exists between state-of-the-art machine learning and human intelligence.