Action-Based Representation Learning for Autonomous Driving
Yi Xiao
Felipe Codevilla
Antonio M. López
Human drivers produce a vast amount of data which could, in principle, be used to improve autonomous driving systems. Unfortunately, seeming… (see more)ly straightforward approaches for creating end-to-end driving models that map sensor data directly into driving actions are problematic in terms of interpretability, and typically have significant difficulty dealing with spurious correlations. Alternatively, we propose to use this kind of action-based driving data for learning representations. Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery and outperform pure end-to-end driving models, while being more interpretable. Further, we demonstrate how this strategy outperforms previous methods based on learning inverse dynamics models as well as other methods based on heavy human supervision (ImageNet).
Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants
Paul Bautin
Capacity Planning in Stable Matching
Federico Bobbio
Andrea Lodi
Ignacio Rios
Alfredo Torrico
We introduce the problem of jointly increasing school capacities and finding a student-optimal assignment in the expanded market. Due to the… (see more) impossibility of efficiently solving the problem with classical methods, we generalize existent mathematical programming formulations of stability constraints to our setting, most of which result in integer quadratically-constrained programs. In addition, we propose a novel mixed-integer linear programming formulation that is exponentially large on the problem size. We show that its stability constraints can be separated by exploiting the objective function, leading to an effective cutting-plane algorithm. We conclude the theoretical analysis of the problem by discussing some mechanism properties. On the computational side, we evaluate the performance of our approaches in a detailed study, and we find that our cutting-plane method outperforms our generalization of existing mixed-integer approaches. We also propose two heuristics that are effective for large instances of the problem. Finally, we use the Chilean school choice system data to demonstrate the impact of capacity planning under stability conditions. Our results show that each additional seat can benefit multiple students and that we can effectively target the assignment of previously unassigned students or improve the assignment of several students through improvement chains. These insights empower the decision-maker in tuning the matching algorithm to provide a fair application-oriented solution.
FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters
Yuwei Cheng
Jiannan Zhu
Mengxin Jiang
Jie Fu
Changsong Pang
Peidong Wang
Kris Sankaran
Olawale Moses Onabola
Yimin Liu
Dianbo Liu
Marine debris is severely threatening the marine lives and causing sustained pollution to the whole ecosystem. To prevent the wastes from ge… (see more)tting into the ocean, it is helpful to clean up the floating wastes in inland waters using the autonomous cleaning devices like unmanned surface vehicles. The cleaning efficiency relies on a high-accurate and robust object detection system. However, the small size of the target, the strong light reflection over water surface, and the reflection of other objects on bank-side all bring challenges to the vision-based object detection system. To promote the practical application for autonomous floating wastes cleaning, we present FloW†, the first dataset for floating waste detection in inland water areas. The dataset consists of an image sub-dataset FloW-Img and a multimodal sub-dataset FloW-RI which contains synchronized millimeter wave radar data and images. Accurate annotations for images and radar data are provided, supporting floating waste detection strategies based on image, radar data, and the fusion of two sensors. We perform several baseline experiments on our dataset, including vision-based and radar-based detection methods. The results show that, the detection accuracy is relatively low and floating waste detection still remains a challenging task.
Inter-Brain Synchronization: From Neurobehavioral Correlation to Causal Explanation
Normalizing automatic spinal cord cross-sectional area measures
S. Bédard
Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess spinal cord atrophy in various neurodegenerative diseases. However,… (see more) the considerable inter-subject variability among healthy participants currently limits its usage. Previous studies explored factors contributing to the variability, yet the normalization models were based on a relatively limited number of participants (typically 300 participants), required manual intervention, and were not implemented in an open-access comprehensive analysis pipeline. Another limitation is related to the imprecise prediction of the spinal levels when using vertebral levels as a reference; a question never addressed before in the search for a normalization method. In this study we implemented a method to measure CSA automatically from a spatial reference based on the central nervous system (the pontomedullary junction, PMJ), we investigated various factors to explain variability, and we developed normalization strategies on a large cohort (N=804). Cervical spinal cord CSA was computed on T1w MRI scans for 804 participants from the UK Biobank database. In addition to computing cross-sectional at the C2-C3 vertebral disc, it was also measured at 64 mm caudal from the PMJ. The effect of various biological, demographic and anatomical factors was explored by computing Pearson’s correlation coefficients. A stepwise linear regression found significant predictors; the coefficients of the best fit model were used to normalize CSA. The correlation between CSA measured at C2-C3 and using the PMJ was y = 0.98x + 1.78 (R2 = 0.97). The best normalization model included thalamus volume, brain volume, sex and interaction between brain volume and sex. With this model, the coefficient of variation went down from 10.09% (without normalization) to 8.59%, a reduction of 14.85%. In this study we identified factors explaining inter-subject variability of spinal cord CSA over a large cohort of participants, and developed a normalization model to reduce the variability. We implemented an approach, based on the PMJ, to measure CSA to overcome limitations associated with the vertebral reference. This approach warrants further validation, especially in longitudinal cohorts. The PMJ-based method and normalization models are readily available in the Spinal Cord Toolbox.
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Season-Based Occupancy Prediction in Residential Buildings Using Machine Learning Models
Bowen Yang
Fariborz Haghighat
Karthik Panchabikesan
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning
Barbara Feulner
Raeed H. Chowdhury
Lee Miller
Juan A. Gallego
Claudia Clopath