Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Representation Learning via Non-Contrastive Mutual Information
Causal representation learning (CRL) enhances machine learning models' robustness and generalizability by learning structural causal models … (voir plus)associated with data-generating processes. We focus on a family of CRL methods that uses contrastive data pairs in the observable space, generated before and after a random, unknown intervention, to identify the latent causal model. (Brehmer et al., 2022) showed that this is indeed possible, given that all latent variables can be intervened on individually. However, this is a highly restrictive assumption in many systems. In this work, we instead assume interventions on arbitrary subsets of latent variables, which is more realistic. We introduce a theoretical framework that calculates the degree to which we can identify a causal model, given a set of possible interventions, up to an abstraction that describes the system at a higher level of granularity.
2025-04-23
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (publié)
BACKGROUND
The social stigma of families of children living with colostomies due to anorectal malformation (ARM) is significant in low-incom… (voir plus)e countries (LICs). Improved access to pediatric surgery has resulted in more 1-stage ARM procedures in Southwestern Uganda, avoiding colostomy creation, but the impact on social stigma experienced by families is unknown. We hypothesized that this change would decrease the social stigma experienced by families.
METHODS
A single-center mixed retrospective and prospective cohort study with combined qualitative data of families of children with ARM who underwent corrective surgery compared the stigma experienced by those with colostomies to those without. The Kilifi Stigma Scale of Epilepsy (KSSE) was used to assess social stigma. Multivariable regression analysis assessed differences in the stigma experienced, controlling for age at diagnosis, rurality, distance traveled, sex, and parental education. Subgroup analysis assessed the impact of colostomy duration on stigma, stratified over parental education.
RESULTS
Patient/family dyads with 238 ARM were included; 177 (74%) received a colostomy. Most patients were male (51%), lived in rural areas (71%), and had parents with primary school education (65%). For those without a colostomy, the median KSSE was 0 (Q1-Q3 0-0), compared to 11 (Q1-Q3 3-20) for colostomy. On multivariable analysis, after controlling for age at diagnosis, rurality, distance traveled, sex, and parental education attainment, families of patients with ARM who received a colostomy had a median KSSE score 7.8 points higher than those who did not receive a colostomy (coefficient 7.78, 95% 3.14-12.43, and p = 0.001). When the duration of colostomy (in years) was examined, the median KSSE score increased by 1.58 points for each additional year for a patient who had a colostomy (IRR 1.58, 95% CI: 0.76-2.40, and p 0.001).
CONCLUSION
Adopting a 1-stage ARM repair for the select types, which avoids colostomy creation, significantly reduces the exper