Publications

Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Implementation of Sparse Superposition Codes
Carlo Condo
Sparse superposition codes (SSCs) are capacity achieving codes whose decoding process is a linear sensing problem. Decoding approaches thus … (voir plus)exploit the approximate message passing algorithm, which has been proven to be effective in compressing sensing. Previous work from the authors has evaluated the error correction performance of SSCs under finite precision and finite code length. This paper proposes the first SSC encoder and decoder architectures in the literature. The architectures are parametrized and applicable to all SSCs: A set of wide-ranging case studies is then considered, and code-specific approximations, along with implementation results in 65 nm CMOS technology, are then provided. The encoding process can be carried out with low power consumption (
Multi-modal Variational Encoder-Decoders
Iulian V. Serban
Alexander G. Ororbia II
Recent advances in neural variational inference have facilitated efficient training of powerful directed graphical models with continuous la… (voir plus)tent variables, such as variational autoencoders. However, these models usually assume simple, uni-modal priors — such as the multivariate Gaussian distribution — yet many real-world data distributions are highly complex and multi-modal. Examples of complex and multi-modal distributions range from topics in newswire text to conversational dialogue responses. When such latent variable models are applied to these domains, the restriction of the simple, uni-modal prior hinders the overall expressivity of the learned model as it cannot possibly capture more complex aspects of the data distribution. To overcome this critical restriction, we propose a flexible, simple prior distribution which can be learned efficiently and potentially capture an exponential number of modes of a target distribution. We develop the multi-modal variational encoder-decoder framework and investigate the effectiveness of the proposed prior in several natural language processing modeling tasks, including document modeling and dialogue modeling.
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martin Arjovsky
Vincent Dumoulin
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserste… (voir plus)in GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
Seyyed Ali Hashemi
Carlo Condo
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next gen… (voir plus)eration of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable tradeoff between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of path splitting required to decode rate one and single parity check codes. Thus, the number of splitting can be limited while guaranteeing exactly the same error-correction performance as if the paths were forked at each bit estimation. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of path forks in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: It is shown that our design can achieve