Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In reinforcement learning (RL), when defining a Markov Decision Process (MDP), the environment dynamics is implicitly assumed to be stationa… (voir plus)ry. This assumption of stationarity, while simplifying, can be unrealistic in many scenarios. In the continual reinforcement learning scenario, the sequence of tasks is another source of nonstationarity. In this work, we propose to examine this continual reinforcement learning setting through the Block Contextual MDP (BC-MDP) framework, which enables us to relax the assumption of stationarity. This framework challenges RL algorithms to handle both nonstationarity and rich observation settings and, by additionally leveraging smoothness properties, enables us to study generalization bounds for this setting. Finally, we take inspiration from adaptive control to propose a novel algorithm that addresses the challenges introduced by this more realistic BC-MDP setting, allows for zero-shot adaptation at evaluation time, and achieves strong performance on several nonstationary environments.
2022-05-11
Proceedings of The 4th Annual Learning for Dynamics and Control Conference (publié)
Recently, Loizou et al. (2021), proposed and analyzed stochastic gradient descent (SGD) with stochastic Polyak stepsize (SPS). The proposed … (voir plus)SPS comes with strong convergence guarantees and competitive performance; however, it has two main drawbacks when it is used in non-over-parameterized regimes: (i) It requires a priori knowledge of the optimal mini-batch losses, which are not available when the interpolation condition is not satisfied (e.g., regularized objectives), and (ii) it guarantees convergence only to a neighborhood of the solution. In this work, we study the dynamics and the convergence properties of SGD equipped with new variants of the stochastic Polyak stepsize and provide solutions to both drawbacks of the original SPS. We first show that a simple modification of the original SPS that uses lower bounds instead of the optimal function values can directly solve issue (i). On the other hand, solving issue (ii) turns out to be more challenging and leads us to valuable insights into the method's behavior. We show that if interpolation is not satisfied, the correlation between SPS and stochastic gradients introduces a bias, which effectively distorts the expectation of the gradient signal near minimizers, leading to non-convergence - even if the stepsize is scaled down during training. To fix this issue, we propose DecSPS, a novel modification of SPS, which guarantees convergence to the exact minimizer - without a priori knowledge of the problem parameters. For strongly-convex optimization problems, DecSPS is the first stochastic adaptive optimization method that converges to the exact solution without restrictive assumptions like bounded iterates/gradients.
Interpreting the predictions of existing Question Answering (QA) models is critical to many real-world intelligent applications, such as QA … (voir plus)systems for healthcare, education, and finance. However, existing QA models lack interpretability and provide no feedback or explanation for end-users to help them understand why a specific prediction is the answer to a question. In this research, we argue that the evidences of an answer is critical to enhancing the interpretability of QA models. Unlike previous research that simply extracts several sentence(s) in the context as evidence, we are the first to explicitly define the concept of evidence as the supporting facts in a context which are informative, concise, and readable. Besides, we provide effective strategies to quantitatively measure the informativeness, conciseness and readability of evidence. Furthermore, we propose Grow-and-Clip Evidence Distillation (GCED) algorithm to extract evidences from the contexts by trade-off informativeness, conciseness, and readability. We conduct extensive experiments on the SQuAD and TriviaQA datasets with several baseline models to evaluate the effect of GCED on interpreting answers to questions. Human evaluation are also carried out to check the quality of distilled evidences. Experimental results show that automatic distilled evidences have human-like informativeness, conciseness and readability, which can enhance the interpretability of the answers to questions.
2022-05-09
2022 IEEE 38th International Conference on Data Engineering (ICDE) (publié)
Meaningful performance assessment of biomedical image analysis algorithms depends on objective and appropriate performance metrics. There ar… (voir plus)e major shortcomings in the current state of the art. Yet, so far limited attention has been paid to practical pitfalls associated when using particular metrics for image analysis tasks. Therefore, a number of international initiatives have collaborated to offer researchers with guidance and tools for selecting performance metrics in a problem-aware manner. In our proposed framework, the characteristics of the given biomedical problem are first captured in a problem fingerprint, which identifies properties related to domain interests, the target structure(s), the input datasets, and algorithm output. A problem category-specific mapping is applied in the second step to match fingerprints to metrics that reflect domain requirements. Based on input from experts from more than 60 institutions worldwide, we believe our metric recommendation framework to be useful to the MIDL community and to enhance the quality of biomedical image analysis algorithm validation.
Recent years have witnessed the dramatic growth of paper volumes with plenty of new research papers published every day, especially in the a… (voir plus)rea of computer science. How to glean papers worth reading from the massive literature to do a quick survey or keep up with the latest advancement about a specific research topic has become a challenging task. Existing academic search engines return relevant papers by individually calculating the relevance between each paper and query. However, such systems usually omit the prerequisite chains of a research topic and cannot form a meaningful reading path. In this paper, we introduce a new task named Reading Path Generation (RPG) which aims at automatically producing a path of papers to read for a given query. To serve as a research benchmark, we further propose SurveyBank, a dataset consisting of large quantities of survey papers in the field of computer science as well as their citation relationships. Furthermore, we propose a graph-optimization-based approach for reading path generation which takes the relationship between papers into account. Extensive evaluations demonstrate that our approach outperforms other baselines. A real-time Reading Path Generation (RePaGer) system has been also implemented with our designed model. Our source code and SurveyBank dataset can be found here11https://github.com/JiayuanDing100/Reading-Path-Generation.
2022-05-09
2022 IEEE 38th International Conference on Data Engineering (ICDE) (publié)
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi
Adam Ścibior
Andreas Munk
Mehrdad Ghadiri
Atilim Güneş Baydin
Bradley Gram-Hansen
C. S. D. Witt
Robert Zinkov
Philip Torr
Tom Rainforth
Yee Whye Teh
Frank Wood
Existing approaches to amortized inference in probabilistic programs with unbounded loops can produce estimators with infinite variance. An … (voir plus)instance of this is importance sampling inference in programs that explicitly include rejection sampling as part of the user-programmed generative procedure. In this paper we develop a new and efficient amortized importance sampling estimator. We prove finite variance of our estimator and empirically demonstrate our method's correctness and efficiency compared to existing alternatives on generative programs containing rejection sampling loops and discuss how to implement our method in a generic probabilistic programming framework.
2022-05-03
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics (publié)