Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Identifying Different Student Clusters in Functional Programming Assignments: From Quick Learners to Struggling Students
Instructors and students alike are often focused on the grade in programming assignments as a key measure of how well a student is mastering… (voir plus) the material and whether a student is struggling. This can be, however, misleading. Especially when students have access to auto-graders, their grades may be heavily skewed. In this paper, we analyze student assignment submission data collected from a functional programming course taught at McGill university incorporating a wide range of features. In addition to the grade, we consider activity time data, time spent, and the number of static errors. This allows us to identify four clusters of students: "Quick-learning", "Hardworking", "Satisficing", and "Struggling" through cluster algorithms. We then analyze how work habits, working duration, the range of errors, and the ability to fix errors impact different clusters of students. This structured analysis provides valuable insights for instructors to actively help different types of students and emphasize different aspects of their overall course design. It also provides insights for students themselves to understand which aspects they still struggle with and allows them to seek clarification and adjust their work habits.
2023-03-03
Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (publié)
Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage la… (voir plus)rge unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.
Inference time, model size, and accuracy are critical for deploying deep neural network models. Numerous research efforts have been made to … (voir plus)compress neural network models with faster inference and higher accuracy. Pruning and quantization are mainstream methods to this end. During model quantization, converting individual float values of layer weights to low-precision ones can substantially reduce the computational overhead and improve the inference speed. Many quantization methods have been studied, for example, vector quantization, low-bit quantization, and binary/ternary quantization. This survey focuses on ternary quantization. We review the evolution of ternary quantization and investigate the relationships among existing ternary quantization methods from the perspective of projection function and optimization methods.
The renewable power has been widely used in modern cloud data centers, which also produce large electricity bills and the negative impacts o… (voir plus)n environments. However, frequent fluctuation and intermittency of renewable power often cause the challenges in terms of the stability of both electricity grid and data centers, as well as decreasing the utilization of renewable power. Existing schemes fail to alleviate the renewable power fluctuation, which is caused by the essential properties of renewable power. In order to address this problem, we propose an efficient and easy-to-use smooth renewable power-aware scheme, called Smoother, which consists of Flexible Smoothing (FS) and Active Delay (AD). First, in order to smooth the fluctuation of renewable power, FS carries out the optimized charge/discharge operation via computing the minimum variance of the renewable power that is supplied to data centers per interval. Second, AD improves the utilization of renewable power via actively adjusting the execution time of deferrable workloads. Extensive experimental results via examining the traces of real-world data centers demonstrate that Smoother significantly reduces the negative impact of renewable power fluctuations on data centers and improves the utilization of renewable power by 250.88 percent on average. We have released the source codes for public use.
This article presents an extended state space model for aggregation of large-scale electric vehicles (EVs) for frequency regulation and peak… (voir plus) load shaving in power systems. The proposed model systematically deals with the fast charging of EVs as an effective solution for immediate charging requirements. Furthermore, the proposed extended state space model increases the flexibility of the EV aggregator (EVA) by enabling the EVs to participate in ancillary services with both regular and fast charging/discharging rates. This will help the EVA to provide a prompt and efficient response to severe generation-consumption imbalances. A probabilistic control approach is developed which reduces the communication burden of the EVA. Furthermore, the uncertainties related to EV users' behavior are modeled in real-time. The simulations are conducted for a typical power system including a large population of EVs, a conventional generator (CG), and a wind generation system. It is shown that the proposed aggregation model can accurately describe the aggregated behavior of a large population of EVs enabling them to efficiently participate in frequency regulation and peak load shaving services. Finally, the performance of EVA is evaluated for different driving behaviors and state of charge (SOC) levels of the EV population.
2023-03-01
IEEE Transactions on Transportation Electrification (publié)