Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
We consider minimizing functions for which it is expensive to compute the gradient. Such functions are prevalent in reinforcement learning, … (voir plus)imitation learning and bilevel optimization. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints that arise in machine learni… (voir plus)ng applications. In recent years, stochastic versions of FW have gained popularity, motivated by large datasets for which the computation of the full gradient is prohibitively expensive. In this paper, we present two new variants of the FW algorithms for stochastic finite-sum minimization. Our algorithms have the best convergence guarantees of existing stochastic FW approaches for both convex and non-convex objective functions. Our methods do not have the issue of permanently collecting large batches, which is common to many stochastic projection-free approaches. Moreover, our second approach does not require either large batches or full deterministic gradients, which is a typical weakness of many techniques for finite-sum problems. The faster theoretical rates of our approaches are confirmed experimentally.
Environmental Scan of Existing Digital Health Solutions for Older Adults Living with Neurocognitive Disorders (Mild and Major) and Their Informal Caregivers: Summary Report
: Digital health has added numerous promising solutions to enhance the health and wellness of people living with dementia and other cognitiv… (voir plus)e problems and their informal caregivers. This work aims to summarize currently available digital health solutions and their related characteristics to develop a decision support tool for older adults living with mild or major neurocognitive disorders and their informal caregivers. We conducted an environmental scan to identify digital health solutions from a systematic review and targeted searches for grey literature covering the regions of Canada and Europe. Technological tools were scanned based on a preformatted extraction grid. We assessed their relevance based on selected attributes. We identified 100 available digital health solutions. The majority (56%) were not specific to dementia. Only 28% provided scientific evidence of their effectiveness. Remote patient care, movement tracking and cognitive exercises were the most common purposes of digital health solutions. Most solutions were presented as mobility aid tools, pill dispensers, apps, web, or a combination of these platforms. This knowledge will inform the development of a decision support tool to assist older adults and their informal caregivers in their search for adequate eHealth solutions according to their needs and preferences, based on trustable information.
2023-04-22
Proceedings of the 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health (publié)
An exploratory cross-sectional study of the effects of ongoing relationships with accompanying patients on cancer care experience, self-efficacy, and psychological distress
We present SSS3D, a fast multi-objective NAS framework designed to find computationally efficient 3D semantic scene segmentation networks. I… (voir plus)t uses RandLA-Net, an off-the-shelf point-based network, as a super-network to enable weight sharing and reduce search time by 99.67% for single-stage searches. SSS3D has a complex search space composed of sampling and architectural parameters that can form 2.88 * 10^17 possible networks. To further reduce search time, SSS3D splits the complete search space and introduces a two-stage search that finds optimal subnetworks in 54% of the time required by single-stage searches.
The documentation practice for machine-learned (ML) models often falls short of established practices for traditional software, which impede… (voir plus)s model accountability and inadvertently abets inappropriate or misuse of models. Recently, model cards, a proposal for model documentation, have attracted notable attention, but their impact on the actual practice is unclear. In this work, we systematically study the model documentation in the field and investigate how to encourage more responsible and accountable documentation practice. Our analysis of publicly available model cards reveals a substantial gap between the proposal and the practice. We then design a tool named DocML aiming to (1) nudge the data scientists to comply with the model cards proposal during the model development, especially the sections related to ethics, and (2) assess and manage the documentation quality. A lab study reveals the benefit of our tool towards long-term documentation quality and accountability.
2023-04-19
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (publié)