We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Electromagnetic interference shielding in lightweight carbon xerogels
With the increasing use of high-frequency electronic and wireless devices, electromagnetic interference (EMI) has become a growing concern d… (see more)ue to its potential impact on both electronic devices and human health. In this study, we demonstrated the performance of lightweight, electrically conducting 3D resorcinol-formaldehyde carbon xerogels, of 2.4 mm thickness, as an EMI shieldin the frequency range of 10–15 GHz (X-Ku band). The brittle carbon xerogels revealed complex porous structures with irregularly shaped pores that were randomly distributed. Electrochemical characterization revealed that the material behaved as an electrical double-layer capacitor. The carbon xerogels displayed reflection-dominated (∼ 84%) shielding behavior, with a total EMI shielding effectiveness (SE) value of ∼ 61 dB. The absorption process also contributed (∼ 16%) to the total SE. This behavior is attributed to the carbon xerogels' complex porous network, which effectively suppresses EM waves.
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions. Recent sequenc… (see more)e representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge. In contrast, structure-based methods leverage 3D structural information with graph neural networks and geometric pre-training methods show potential in function prediction tasks, but still suffers from the limited number of available structures. To bridge this gap, our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM (ESM-2) with distinct structure encoders (GVP, GearNet, CDConv). We introduce three representation fusion strategies and explore different pre-training techniques. Our method achieves significant improvements over existing sequence- and structure-based methods, setting new state-of-the-art for function annotation. This study underscores several important design choices for fusing protein sequence and structure information. Our implementation is available at https://github.com/DeepGraphLearning/ESM-GearNet.
Cloud networks are the backbone of the modern distributed internet infrastructure as they provision most of the on-demand resources organiza… (see more)tions and individuals use daily. However, any abrupt cyber-attack could disrupt the provisioning of some of the cloud resources fulfilling the needs of customers, industries, and governments. In this work, we introduce a game-theoretic model that assesses the cyber-security risk of cloud networks and informs security experts on the optimal security strategies. Our approach combines game theory, combinatorial optimization, and cyber-security and aims at minimizing the unexpected network disruptions caused by malicious cyber-attacks under uncertainty. Methodologically, our approach consists of a simultaneous and non-cooperative attacker-defender game where each player solves a combinatorial optimization problem parametrized in the variables of the other player. Practically, our approach enables security experts to (i.) assess the security posture of the cloud network, and (ii.) dynamically adapt the level of cyber-protection deployed on the network. We provide a detailed analysis of a real-world cloud network and demonstrate the efficacy of our approach through extensive computational tests.
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream… (see more)) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.