Electromagnetic interference shielding in lightweight carbon xerogels
Biporjoy Sarkar
Floriane Miquet-Westphal
Sanyasi Bobbara
Ben George
David Dousset
Ke Wu
Fabio Cicoira
With the increasing use of high-frequency electronic and wireless devices, electromagnetic interference (EMI) has become a growing concern d… (see more)ue to its potential impact on both electronic devices and human health. In this study, we demonstrated the performance of lightweight, electrically conducting 3D resorcinol-formaldehyde carbon xerogels, of 2.4 mm thickness, as an EMI shieldin the frequency range of 10–15 GHz (X-Ku band). The brittle carbon xerogels revealed complex porous structures with irregularly shaped pores that were randomly distributed. Electrochemical characterization revealed that the material behaved as an electrical double-layer capacitor. The carbon xerogels displayed reflection-dominated (∼ 84%) shielding behavior, with a total EMI shielding effectiveness (SE) value of ∼ 61 dB. The absorption process also contributed (∼ 16%) to the total SE. This behavior is attributed to the carbon xerogels' complex porous network, which effectively suppresses EM waves.
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT
Vincent Andrearczyk
Valentin Oreiller
Moamen A. Abobakr
Azadeh Akhavanallaf
Panagiotis Balermpas
Sarah Boughdad
Leo Capriotti
Joel Castelli
Catherine Cheze Le Rest
Pierre Decazes
Ricardo Correia
D. El-Habashy
Hesham M. Elhalawani
C. Fuller
Mario Jreige
Yomna Khamis
Agustina La Greca Saint-Esteven
A. Mohamed
M. Naser
John O. Prior … (see 11 more)
Su Ruan
Stephanie Tanadini-Lang
Olena Tankyevych
Yazdan Salimi
Pierre Véra
Dimitris Visvikis
K. Wahid
Habib Zaidi
Mathieu Hatt
Adrien Depeursinge
Behavioral Cloning for Crystal Design
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.
Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease
Andrea I. Luppi
S. Parker Singleton
Justine Y. Hansen
Amy Kuceyeski
Richard F. Betzel
Bratislav Mišić
Instance-Conditioned GAN Data Augmentation for Representation Learning
Pietro Astolfi
Arantxa Casanova
Jakob Verbeek
Michal Drozdzal
Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies
Chen-Fang Chung
Joan Papillon
José R. Navarro-Betancourt
Julie Guillemette
Ameya Bhope
Andrey V. Cybulsky
Applying the column generation method to the intensity modulated high dose rate brachytherapy inverse planning problem
Majd Antaki
Marc-André Renaud
Marc Morcos
Jan Seuntjens
Optimization of the location and design of urban green spaces
Caroline Leboeuf
Yan Kestens
Benoit Thierry
Proactive Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
andrew williams
Victor Schmidt
Pierre-Luc St-Charles
Akshay Patel
Yang Zhang
Bernhard Schölkopf
A Systematic Study of Joint Representation Learning on Protein Sequences and Structures
Zuobai Zhang
Chuanrui Wang
Minghao Xu
Vijil Chenthamarakshan
Aurelie Lozano
Payel Das
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions. Recent sequenc… (see more)e representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge. In contrast, structure-based methods leverage 3D structural information with graph neural networks and geometric pre-training methods show potential in function prediction tasks, but still suffers from the limited number of available structures. To bridge this gap, our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM (ESM-2) with distinct structure encoders (GVP, GearNet, CDConv). We introduce three representation fusion strategies and explore different pre-training techniques. Our method achieves significant improvements over existing sequence- and structure-based methods, setting new state-of-the-art for function annotation. This study underscores several important design choices for fusing protein sequence and structure information. Our implementation is available at https://github.com/DeepGraphLearning/ESM-GearNet.
The Critical Node Game
Gabriele Dragotto
Amine Boukhtouta
Andrea Lodi
Mehdi Taobane
Cloud networks are the backbone of the modern distributed internet infrastructure as they provision most of the on-demand resources organiza… (see more)tions and individuals use daily. However, any abrupt cyber-attack could disrupt the provisioning of some of the cloud resources fulfilling the needs of customers, industries, and governments. In this work, we introduce a game-theoretic model that assesses the cyber-security risk of cloud networks and informs security experts on the optimal security strategies. Our approach combines game theory, combinatorial optimization, and cyber-security and aims at minimizing the unexpected network disruptions caused by malicious cyber-attacks under uncertainty. Methodologically, our approach consists of a simultaneous and non-cooperative attacker-defender game where each player solves a combinatorial optimization problem parametrized in the variables of the other player. Practically, our approach enables security experts to (i.) assess the security posture of the cloud network, and (ii.) dynamically adapt the level of cyber-protection deployed on the network. We provide a detailed analysis of a real-world cloud network and demonstrate the efficacy of our approach through extensive computational tests.
Transfer Entropy Bottleneck: Learning Sequence to Sequence Information Transfer
Damjan Kalajdzievski
Ximeng Mao
Pascal Fortier-Poisson
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream… (see more)) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.