A case–control study on predicting population risk of suicide using health administrative data: a research protocol
JianLi Wang
Fatemeh Gholi Zadeh Kharrat
Jean-François Pelletier
Louis Rochette
Eric Pelletier
Pascale Lévesque
Victoria Massamba
Camille Brousseau-Paradis
Mada Mohammed
Geneviève Gariépy
Alain Lesage
DisKeyword: Tweet Corpora Exploration for Keyword Selection
Sacha Lévy
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity
Xiaoxuan Yan
Ru Kong
Aihuiping Xue
Qing Yang
Csaba Orban
Lijun An
Avram J. Holmes
Xing Qian
Jianzhong Chen
Xi-Nian Zuo
Juan Helen Zhou
Marielle V Fortier
Ai Peng Tan
Peter Gluckman
Yap Seng Chong
Michael J Meaney
Simon B. Eickhoff
B.T. Thomas Yeo
Commonality in Recommender Systems: Evaluating Recommender Systems to Enhance Cultural Citizenship
Andres Ferraro
Gustavo Ferreira
Georgina Born
Recall, Robustness, and Lexicographic Evaluation
Bhaskar Mitra
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Unsupervised Layer-wise Score Aggregation for Textual OOD Detection
Maxime DARRIN
Guillaume Staerman
Eduardo Dadalto Câmara Gomes
Pierre Colombo