Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Identifying birdsong syllables without labelled data
Identifying sequences of syllables within birdsongs is key to tackling a wide array of challenges, including bird individual identification … (voir plus)and better understanding of animal communication and sensory-motor learning. Recently, machine learning approaches have demonstrated great potential to alleviate the need for experts to label long audio recordings by hand. However, they still typically rely on the availability of labelled data for model training, restricting applicability to a few species and datasets. In this work, we build the first fully unsupervised algorithm to decompose birdsong recordings into sequences of syllables. We first detect syllable events, then cluster them to extract templates -- syllable representations -- before performing matching pursuit to decompose the recording as a sequence of syllables. We evaluate our automatic annotations against human labels on a dataset of Bengalese finch songs and find that our unsupervised method achieves high performance. We also demonstrate that our approach can distinguish individual birds within a species through their unique vocal signatures, for both Bengalese finches and another species, the great tit.
Large Language Models (LLMs) are increasingly deployed in sensitive domains such as finance, where intrinsic representational biases can pro… (voir plus)pagate into extrinsic harms in downstream tasks. High-stakes applications such as credit scoring are especially vulnerable, as biased model behavior can reinforce existing inequities and result in harmful disparities across demographic groups \cite{blodgett2020language}. While prior research has questioned whether intrinsic bias truly translates into extrinsic unfairness \cite{goldfarb2020intrinsic}, this connection remains poorly understood. To address this gap, we propose a four-stage evaluation framework that systematically examines the relationship between intrinsic and extrinsic fairness. In Stage 1, we establish a baseline by training models such as logistic regression, LLM embeddings, and fine-tuned classifiers without any mitigation strategy, providing reference points for fairness and accuracy. In Stage 2, we evaluate task-level mitigation through Counterfactual Data Augmentation (CDA) \cite{gallegos2024bias}, which balances gender representation by generating counterfactual training instances, allowing us to assess improvements in extrinsic fairness. In Stage 3, we adapt concept unlearning \cite{dige2024mitigating} as an intrinsic bias mitigation method, encouraging LLMs to forget socioeconomic stereotypes while preserving fluency and predictive utility, and we evaluate how this intervention impacts downstream fairness. Finally, in Stage 4, we combine CDA with unlearning to test whether dual mitigation further enhances fairness. We conduct experiments on three datasets (Adult Census Income, ACS Employment, and German Credit) using instruction-tuned LLMs (LLaMA-3.1, Phi-3, and Gemma-2) in both frozen embedding and fine-tuned classifier settings, evaluating performance with predictive accuracy and group fairness metrics, including Demographic Parity, Accuracy Parity, and Equality of Odds.
Our experiments demonstrate that intrinsic bias mitigation through unlearning is highly effective; in Phi-3, for instance, it reduces gender socioeconomic stereotype gaps by 94.9\% while maintaining language fluency. In downstream tasks, unlearning consistently improves group fairness metrics while preserving predictive accuracy, whereas CDA primarily enhances demographic parity but can introduce accuracy trade-offs. For instance, on the ACS Employment dataset, unlearned Gemma-2 improved Accuracy Parity from 0.199 to 0.104 (48\% gain), and combining CDA with unlearning on Llama-3.1 reduced Demographic Parity from 0.080 to 0.014 (82\% gain). On the Adult dataset, all three models maintained accuracy above 0.82 while showing reduced fairness gaps, and on German Credit, unlearning consistently outperformed CDA by improving group fairness metrics without sacrificing predictive performance. Overall, CDA and unlearning exhibit complementary effects, with their combination yielding the strongest fairness improvements across models and datasets.
This work contributes to bias mitigation and fairness in LLMs in two ways. First, we adapt concept unlearning to mitigate socioeconomic stereotyping, showing that intrinsic bias reduction improves both representational and downstream fairness. Second, we introduce a unified evaluation framework that links intrinsic and extrinsic fairness, enabling systematic comparison of mitigation strategies. The framework is flexible, applying to both fine-tuned and frozen LLMs, and offers actionable guidance for deploying fairer models in finance and other high-stakes domains.
Recent advances in neural decoding have led to the development of large-scale deep learning-based neural decoders that can generalize across… (voir plus) sessions and subjects. However, existing approaches predominantly focus on single modalities of neural activity, limiting their applicability to specific modalities and tasks. In this work, we present a multimodal extension of the POYO framework that jointly processes neuronal spikes and local field potentials (LFPs) for behavioural decoding. Our approach employs flexible tokenization schemes for both spikes and LFPs, enabling efficient processing of heterogeneous neural populations without preprocessing requirements like binning. Through experiments on data from nonhuman primates performing motor tasks, we demonstrate that multimodal pretraining yields superior decoding performance compared to unimodal baselines. We also show evidence of cross-modal transfer: models pretrained on both modalities outperform LFP-only models when fine-tuned solely on LFPs, suggesting a path toward more cost-effective brain-computer interfaces that can use performant LFP-based decoders. Our models also exhibit robustness to missing modalities during inference when trained with modality masking, and scale effectively with both model size and pretraining data. Overall, this work represents an important first step towards unified, general-purpose neural decoders capable of leveraging diverse neural signals for a variety of brain-computer interface applications.
Free-form, text-based audio editing remains a persistent challenge, despite progress in inversion-based neural methods. Current approaches r… (voir plus)ely on slow inversion procedures, limiting their practicality. We present a virtual-consistency based audio editing system that bypasses inversion by adapting the sampling process of diffusion models. Our pipeline is model-agnostic, requiring no fine-tuning or architectural changes, and achieves substantial speed-ups over recent neural editing baselines. Crucially, it achieves this efficiency without compromising quality, as demonstrated by quantitative benchmarks and a user study involving 16 participants.
Free-form, text-based audio editing remains a persistent challenge, despite progress in inversion-based neural methods. Current approaches r… (voir plus)ely on slow inversion procedures, limiting their practicality. We present a virtual-consistency based audio editing system that bypasses inversion by adapting the sampling process of diffusion models. Our pipeline is model-agnostic, requiring no fine-tuning or architectural changes, and achieves substantial speed-ups over recent neural editing baselines. Crucially, it achieves this efficiency without compromising quality, as demonstrated by quantitative benchmarks and a user study involving 16 participants.