A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Large Language Models (LLMs) are increasingly deployed in sensitive domains such as finance, where intrinsic representational biases can pro… (see more)pagate into extrinsic harms in downstream tasks. High-stakes applications such as credit scoring are especially vulnerable, as biased model behavior can reinforce existing inequities and result in harmful disparities across demographic groups \cite{blodgett2020language}. While prior research has questioned whether intrinsic bias truly translates into extrinsic unfairness \cite{goldfarb2020intrinsic}, this connection remains poorly understood. To address this gap, we propose a four-stage evaluation framework that systematically examines the relationship between intrinsic and extrinsic fairness. In Stage 1, we establish a baseline by training models such as logistic regression, LLM embeddings, and fine-tuned classifiers without any mitigation strategy, providing reference points for fairness and accuracy. In Stage 2, we evaluate task-level mitigation through Counterfactual Data Augmentation (CDA) \cite{gallegos2024bias}, which balances gender representation by generating counterfactual training instances, allowing us to assess improvements in extrinsic fairness. In Stage 3, we adapt concept unlearning \cite{dige2024mitigating} as an intrinsic bias mitigation method, encouraging LLMs to forget socioeconomic stereotypes while preserving fluency and predictive utility, and we evaluate how this intervention impacts downstream fairness. Finally, in Stage 4, we combine CDA with unlearning to test whether dual mitigation further enhances fairness. We conduct experiments on three datasets (Adult Census Income, ACS Employment, and German Credit) using instruction-tuned LLMs (LLaMA-3.1, Phi-3, and Gemma-2) in both frozen embedding and fine-tuned classifier settings, evaluating performance with predictive accuracy and group fairness metrics, including Demographic Parity, Accuracy Parity, and Equality of Odds.
Our experiments demonstrate that intrinsic bias mitigation through unlearning is highly effective; in Phi-3, for instance, it reduces gender socioeconomic stereotype gaps by 94.9\% while maintaining language fluency. In downstream tasks, unlearning consistently improves group fairness metrics while preserving predictive accuracy, whereas CDA primarily enhances demographic parity but can introduce accuracy trade-offs. For instance, on the ACS Employment dataset, unlearned Gemma-2 improved Accuracy Parity from 0.199 to 0.104 (48\% gain), and combining CDA with unlearning on Llama-3.1 reduced Demographic Parity from 0.080 to 0.014 (82\% gain). On the Adult dataset, all three models maintained accuracy above 0.82 while showing reduced fairness gaps, and on German Credit, unlearning consistently outperformed CDA by improving group fairness metrics without sacrificing predictive performance. Overall, CDA and unlearning exhibit complementary effects, with their combination yielding the strongest fairness improvements across models and datasets.
This work contributes to bias mitigation and fairness in LLMs in two ways. First, we adapt concept unlearning to mitigate socioeconomic stereotyping, showing that intrinsic bias reduction improves both representational and downstream fairness. Second, we introduce a unified evaluation framework that links intrinsic and extrinsic fairness, enabling systematic comparison of mitigation strategies. The framework is flexible, applying to both fine-tuned and frozen LLMs, and offers actionable guidance for deploying fairer models in finance and other high-stakes domains.
As multilingual generative models become more widely used, most safety and fairness evaluation techniques still focus on English-language re… (see more)sources, while overlooking important cross-cultural factors. This limitation raises concerns about fairness and safety, particularly regarding geoculturally situated stereotypes that hinder the models’ global inclusivity. In this work, we present preliminary findings on the impact of stereotype unlearning across languages, specifically in English, French, and Hindi. Using an adapted version of the SeeGULL dataset, we analyze how unlearning stereotypes in one language influences other languages within multilingual large language models. Our study evaluates two model families, Llama-3.1-8B and Aya-Expanse-8B, to assess whether unlearning in one linguistic context transfers across languages, potentially mitigating or exacerbating biases in multilingual settings.