Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
RandomSCM: interpretable ensembles of sparse classifiers tailored for omics data
Background: Understanding the relationship between the Omics and the phenotype is a central problem in precision medicine. The high dimensio… (voir plus)nality of metabolomics data challenges learning algorithms in terms of scalability and generalization. Most learning algorithms do not produce interpretable models -- Method: We propose an ensemble learning algorithm based on conjunctions or disjunctions of decision rules. -- Results : Applications on metabolomics data shows that it produces models that achieves high predictive performances. The interpretability of the models makes them useful for biomarker discovery and patterns discovery in high dimensional data.
Background Artificial intelligence (AI) has shown promising results in various fields of medicine. It has the potential to facilitate shared… (voir plus) decision making (SDM). However, there is no comprehensive mapping of how AI may be used for SDM. Objective We aimed to identify and evaluate published studies that have tested or implemented AI to facilitate SDM. Methods We performed a scoping review informed by the methodological framework proposed by Levac et al, modifications to the original Arksey and O'Malley framework of a scoping review, and the Joanna Briggs Institute scoping review framework. We reported our results based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) reporting guideline. At the identification stage, an information specialist performed a comprehensive search of 6 electronic databases from their inception to May 2021. The inclusion criteria were: all populations; all AI interventions that were used to facilitate SDM, and if the AI intervention was not used for the decision-making point in SDM, it was excluded; any outcome related to patients, health care providers, or health care systems; studies in any health care setting, only studies published in the English language, and all study types. Overall, 2 reviewers independently performed the study selection process and extracted data. Any disagreements were resolved by a third reviewer. A descriptive analysis was performed. Results The search process yielded 1445 records. After removing duplicates, 894 documents were screened, and 6 peer-reviewed publications met our inclusion criteria. Overall, 2 of them were conducted in North America, 2 in Europe, 1 in Australia, and 1 in Asia. Most articles were published after 2017. Overall, 3 articles focused on primary care, and 3 articles focused on secondary care. All studies used machine learning methods. Moreover, 3 articles included health care providers in the validation stage of the AI intervention, and 1 article included both health care providers and patients in clinical validation, but none of the articles included health care providers or patients in the design and development of the AI intervention. All used AI to support SDM by providing clinical recommendations or predictions. Conclusions Evidence of the use of AI in SDM is in its infancy. We found AI supporting SDM in similar ways across the included articles. We observed a lack of emphasis on patients’ values and preferences, as well as poor reporting of AI interventions, resulting in a lack of clarity about different aspects. Little effort was made to address the topics of explainability of AI interventions and to include end-users in the design and development of the interventions. Further efforts are required to strengthen and standardize the use of AI in different steps of SDM and to evaluate its impact on various decisions, populations, and settings.
Resampling is the process of selecting from a set of candidate samples to achieve a distribution (approximately) proportional to a desired t… (voir plus)arget. Recent work has revisited its application to Monte Carlo integration, yielding powerful and practical importance sampling methods. One drawback of existing resampling methods is that they cannot generate stratified samples. We propose two complementary techniques to achieve efficient stratified resampling. We first introduce bidirectional CDF sampling which yields the same result as conventional inverse CDF sampling but in a single pass over the candidates, without needing to store them, similarly to reservoir sampling. We then order the candidates along a space‐filling curve to ensure that stratified CDF sampling of candidate indices yields stratified samples in the integration domain. We showcase our method on various resampling‐based rendering problems.