Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relations les responsables des politiques avec un groupe d’expert·e·s en IA pour discuter librement de leurs défis en matière d'IA et de politique.
Joignez-vous à nous le 17 avril pour notre conférence annuelle d'une journée sur la recherche en IA, mettant en vedette les chercheur·euse·s de Mila et des conférencier·ère·s de renom, au profit de Centraide du Grand Montréal.
Développement du groupe d'experts de l'ONU sur l'IA
Mila a récemment réuni des expert·e·s de renom pour discuter de la création d’un groupe indépendant sur l’IA pour l’ONU. Ce document propose des recommandations clés pour assurer son indépendance et sa légitimité.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Beyond the Safety Bundle: Auditing the Helpful and Harmless Dataset
In an effort to mitigate the harms of large language models (LLMs), learning from human feedback (LHF) has been used to steer LLMs towards o… (voir plus)utputs that are intended to be both less harmful and more helpful. Despite the widespread adoption of LHF in practice, the quality of this feedback and its effectiveness as a safety mitigation technique remain unclear. This study addresses these issues by auditing the widely-used Helpful and Harmless (HH) dataset by Anthropic. Our work includes: (1) a thorough investigation of the dataset's content through both manual and automated evaluation; (2) experiments demonstrating the dataset's impact on models' safety; and (3) an analysis of the 100 most influential papers citing this dataset. Through our audit, we showcase how conceptualization failures and quality issues identified in the HH dataset can create additional harms by leading to disparate safety behaviors across demographic groups. Our findings highlight the need for more nuanced, context-sensitive approaches to safety mitigation in LLMs.
Over the past decade, Deep Learning (DL) has become an integral part of our daily lives. This surge in DL usage has heightened the need for … (voir plus)developing reliable DL software systems. Given that fault localization is a critical task in reliability assessment, researchers have proposed several fault localization techniques for DL-based software, primarily focusing on faults within the DL model. While the DL model is central to DL components, there are other elements that significantly impact the performance of DL components. As a result, fault localization methods that concentrate solely on the DL model overlook a large portion of the system. To address this, we introduce FL4Deep, a system-level fault localization approach considering the entire DL development pipeline to effectively localize faults across the DL-based systems. In an evaluation using 100 faulty DL scripts, FL4Deep outperformed four previous approaches in terms of accuracy for three out of six DL-related faults, including issues related to data (84%), mismatched libraries between training and deployment (100%), and loss function (69%). Additionally, FL4Deep demonstrated superior precision and recall in fault localization for five categories of faults including three mentioned fault types in terms of accuracy, plus insufficient training iteration and activation function.
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detectio… (voir plus)n have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detectio… (voir plus)n have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.
There is a growing interest in training domain-expert LLMs that excel in specific technical fields compared to their general-purpose instruc… (voir plus)tion-tuned counterparts. However, these expert models often experience a loss in their safety abilities in the process, making them capable of generating harmful content. As a solution, we introduce an efficient and effective merging-based alignment method called \textsc{MergeAlign} that interpolates the domain and alignment vectors, creating safer domain-specific models while preserving their utility. We apply \textsc{MergeAlign} on Llama3 variants that are experts in medicine and finance, obtaining substantial alignment improvements with minimal to no degradation on domain-specific benchmarks. We study the impact of model merging through model similarity metrics and contributions of individual models being merged. We hope our findings open new research avenues and inspire more efficient development of safe expert LLMs.
There is a growing interest in training domain-expert LLMs that excel in specific technical fields compared to their general-purpose instruc… (voir plus)tion-tuned counterparts. However, these expert models often experience a loss in their safety abilities in the process, making them capable of generating harmful content. As a solution, we introduce an efficient and effective merging-based alignment method called \textsc{MergeAlign} that interpolates the domain and alignment vectors, creating safer domain-specific models while preserving their utility. We apply \textsc{MergeAlign} on Llama3 variants that are experts in medicine and finance, obtaining substantial alignment improvements with minimal to no degradation on domain-specific benchmarks. We study the impact of model merging through model similarity metrics and contributions of individual models being merged. We hope our findings open new research avenues and inspire more efficient development of safe expert LLMs.
A key objective of interpretability research on large language models (LLMs) is to develop methods for robustly steering models toward desir… (voir plus)ed behaviors. To this end, two distinct approaches to interpretability -- ``bottom-up"and ``top-down"-- have been presented, but there has been little quantitative comparison between them. We present a case study comparing the effectiveness of representative vector steering methods from each branch: function vectors (FV; arXiv:2310.15213), as a bottom-up method, and in-context vectors (ICV; arXiv:2311.06668) as a top-down method. While both aim to capture compact representations of broad in-context learning tasks, we find they are effective only on specific types of tasks: ICVs outperform FVs in behavioral shifting, whereas FVs excel in tasks requiring more precision. We discuss the implications for future evaluations of steering methods and for further research into top-down and bottom-up steering given these findings.
A key objective of interpretability research on large language models (LLMs) is to develop methods for robustly steering models toward desir… (voir plus)ed behaviors. To this end, two distinct approaches to interpretability -- ``bottom-up"and ``top-down"-- have been presented, but there has been little quantitative comparison between them. We present a case study comparing the effectiveness of representative vector steering methods from each branch: function vectors (FV; arXiv:2310.15213), as a bottom-up method, and in-context vectors (ICV; arXiv:2311.06668) as a top-down method. While both aim to capture compact representations of broad in-context learning tasks, we find they are effective only on specific types of tasks: ICVs outperform FVs in behavioral shifting, whereas FVs excel in tasks requiring more precision. We discuss the implications for future evaluations of steering methods and for further research into top-down and bottom-up steering given these findings.
Understanding the mechanisms through which neural networks extract statistics from input-label pairs through feature learning is one of the … (voir plus)most important unsolved problems in supervised learning. Prior works demonstrated that the gram matrices of the weights (the neural feature matrices, NFM) and the average gradient outer products (AGOP) become correlated during training, in a statement known as the neural feature ansatz (NFA). Through the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural feature learning. However, these works do not provide a theoretical explanation for this correlation or its origins. In this work, we further clarify the nature of this correlation, and explain its emergence. We show that this correlation is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent features at each layer. We further establish that the alignment is driven by the interaction of weight changes induced by SGD with the pre-activation features, and analyze the resulting dynamics analytically at early times in terms of simple statistics of the inputs and labels. We prove the derivative alignment occurs with high probability in specific high dimensional settings. Finally, motivated by the observation that the NFA is driven by this centered correlation, we introduce a simple optimization rule that dramatically increases the NFA correlations at any given layer and improves the quality of features learned.
We conduct a large-scale empirical user study in a live setup to evaluate the acceptance of LLM-generated comments and their impact on the r… (voir plus)eview process. This user study was performed in two organizations, Mozilla (which has its codebase available as open source) and Ubisoft (fully closed-source). Inside their usual review environment, participants were given access to RevMate, an LLM-based assistive tool suggesting generated review comments using an off-the-shelf LLM with Retrieval Augmented Generation to provide extra code and review context, combined with LLM-as-a-Judge, to auto-evaluate the generated comments and discard irrelevant cases. Based on more than 587 patch reviews provided by RevMate, we observed that 8.1% and 7.2%, respectively, of LLM-generated comments were accepted by reviewers in each organization, while 14.6% and 20.5% other comments were still marked as valuable as review or development tips. Refactoring-related comments are more likely to be accepted than Functional comments (18.2% and 18.6% compared to 4.8% and 5.2%). The extra time spent by reviewers to inspect generated comments or edit accepted ones (36/119), yielding an overall median of 43s per patch, is reasonable. The accepted generated comments are as likely to yield future revisions of the revised patch as human-written comments (74% vs 73% at chunk-level).