Portrait de Mohammad Pezeshki n'est pas disponible

Mohammad Pezeshki

Collaborateur·rice de recherche
Superviseur⋅e principal⋅e
Co-supervisor
Sujets de recherche
Théorie de l'apprentissage automatique

Publications

The Pitfalls of Memorization: When Memorization Hinders Generalization
Neural networks often learn simple explanations that fit the majority of the data while memorizing exceptions that deviate from these explan… (voir plus)ations. This leads to poor generalization when the learned explanations are spurious. In this work, we formalize
Predicting Grokking Long Before it Happens: A look into the loss landscape of models which grok
Tikeng Notsawo Pascal Junior
Pascal Notsawo
Feedback-guided Data Synthesis for Imbalanced Classification
Current status quo in machine learning is to use static datasets of real images for training, which often come from long-tailed distribution… (voir plus)s. With the recent advances in generative models, researchers have started augmenting these static datasets with synthetic data, reporting moderate performance improvements on classification tasks. We hypothesize that these performance gains are limited by the lack of feedback from the classifier to the generative model, which would promote the usefulness of the generated samples to improve the classifier's performance. In this work, we introduce a framework for augmenting static datasets with useful synthetic samples, which leverages one-shot feedback from the classifier to drive the sampling of the generative model. In order for the framework to be effective, we find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse. We validate three feedback criteria on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset (NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes while being twice efficient in terms of the number of generated synthetic samples. NICO++ also enjoys marked boosts of over 5 percent in worst group accuracy. With these results, our framework paves the path towards effectively leveraging state-of-the-art text-to-image models as data sources that can be queried to improve downstream applications.
Discovering environments with XRM
Diane Bouchacourt
Mark Ibrahim
David Lopez-Paz
Successful out-of-distribution generalization requires environment annotations. Unfortunately, these are resource-intensive to obtain, and t… (voir plus)heir relevance to model performance is limited by the expectations and perceptual biases of human annotators. Therefore, to enable robust AI systems across applications, we must develop algorithms to automatically discover environments inducing broad generalization. Current proposals, which divide examples based on their training error, suffer from one fundamental problem. These methods add hyper-parameters and early-stopping criteria that are impossible to tune without a validation set with human-annotated environments, the very information subject to discovery. In this paper, we propose Cross-Risk-Minimization (XRM) to address this issue. XRM trains two twin networks, each learning from one random half of the training data, while imitating confident held-out mistakes made by its sibling. XRM provides a recipe for hyper-parameter tuning, does not require early-stopping, and can discover environments for all training and validation data. Domain generalization algorithms built on top of XRM environments achieve oracle worst-group-accuracy, solving a long-standing problem in out-of-distribution generalization.
Multi-scale Feature Learning Dynamics: Insights for Double Descent
A key challenge in building theoretical foundations for deep learning is the complex optimization dynamics of neural networks, resulting fro… (voir plus)m the high-dimensional interactions between the large number of network parameters. Such non-trivial interactions lead to intriguing model behaviors such as the phenomenon of "double descent" of the generalization error. The more commonly studied aspect of this phenomenon corresponds to model-wise double descent where the test error exhibits a second descent with increasing model complexity, beyond the classical U-shaped error curve. In this work, we investigate the origins of the less studied epoch-wise double descent in which the test error undergoes two non-monotonous transitions, or descents as the training time increases. We study a linear teacher-student setup exhibiting epoch-wise double descent similar to that in deep neural networks. In this setting, we derive closed-form analytical expressions for the evolution of generalization error over training. We find that double descent can be attributed to distinct features being learned at different scales: as fast-learning features overfit, slower-learning features start to fit, resulting in a second descent in test error. We validate our findings through numerical experiments where our theory accurately predicts empirical findings and remains consistent with observations in deep neural networks.
Gradient Starvation: A Learning Proclivity in Neural Networks
We identify and formalize a fundamental gradient descent phenomenon resulting in a learning proclivity in over-parameterized neural networks… (voir plus). Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task, despite the presence of other predictive features that fail to be discovered. This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks. Using tools from Dynamical Systems theory, we identify simple properties of learning dynamics during gradient descent that lead to this imbalance, and prove that such a situation can be expected given certain statistical structure in training data. Based on our proposed formalism, we develop guarantees for a novel regularization method aimed at decoupling feature learning dynamics, improving accuracy and robustness in cases hindered by gradient starvation. We illustrate our findings with simple and real-world out-of-distribution (OOD) generalization experiments.
Gradient Starvation: A Learning Proclivity in Neural Networks
We identify and formalize a fundamental gradient descent phenomenon resulting in a learning proclivity in over-parameterized neural networks… (voir plus). Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task, despite the presence of other predictive features that fail to be discovered. This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks. Using tools from Dynamical Systems theory, we identify simple properties of learning dynamics during gradient descent that lead to this imbalance, and prove that such a situation can be expected given certain statistical structure in training data. Based on our proposed formalism, we develop guarantees for a novel regularization method aimed at decoupling feature learning dynamics, improving accuracy and robustness in cases hindered by gradient starvation. We illustrate our findings with simple and real-world out-of-distribution (OOD) generalization experiments.
Negative Momentum for Improved Game Dynamics
Games generalize the single-objective optimization paradigm by introducing different objective functions for different players. Differentiab… (voir plus)le games often proceed by simultaneous or alternating gradient updates. In machine learning, games are gaining new importance through formulations like generative adversarial networks (GANs) and actor-critic systems. However, compared to single-objective optimization, game dynamics are more complex and less understood. In this paper, we analyze gradient-based methods with momentum on simple games. We prove that alternating updates are more stable than simultaneous updates. Next, we show both theoretically and empirically that alternating gradient updates with a negative momentum term achieves convergence in a difficult toy adversarial problem, but also on the notoriously difficult to train saturating GANs.
On the Learning Dynamics of Deep Neural Networks
Remi Tachet des Combes
Samira Shabanian
While a lot of progress has been made in recent years, the dynamics of learning in deep nonlinear neural networks remain to this day largely… (voir plus) misunderstood. In this work, we study the case of binary classification and prove various properties of learning in such networks under strong assumptions such as linear separability of the data. Extending existing results from the linear case, we confirm empirical observations by proving that the classification error also follows a sigmoidal shape in nonlinear architectures. We show that given proper initialization, learning expounds parallel independent modes and that certain regions of parameter space might lead to failed training. We also demonstrate that input norm and features' frequency in the dataset lead to distinct convergence speeds which might shed some light on the generalization capabilities of deep neural networks. We provide a comparison between the dynamics of learning with cross-entropy and hinge losses, which could prove useful to understand recent progress in the training of generative adversarial networks. Finally, we identify a phenomenon that we baptize \textit{gradient starvation} where the most frequent features in a dataset prevent the learning of other less frequent but equally informative features.
Negative Momentum for Improved Game Dynamics
Games generalize the single-objective optimization paradigm by introducing different objective functions for different players. Differentiab… (voir plus)le games often proceed by simultaneous or alternating gradient updates. In machine learning, games are gaining new importance through formulations like generative adversarial networks (GANs) and actor-critic systems. However, compared to single-objective optimization, game dynamics are more complex and less understood. In this paper, we analyze gradient-based methods with momentum on simple games. We prove that alternating updates are more stable than simultaneous updates. Next, we show both theoretically and empirically that alternating gradient updates with a negative momentum term achieves convergence in a difficult toy adversarial problem, but also on the notoriously difficult to train saturating GANs.
Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic fe… (voir plus)atures for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.
Deconstructing the Ladder Network Architecture
The Ladder Network is a recent new approach to semi-supervised learning that turned out to be very successful. While showing impressive perf… (voir plus)ormance, the Ladder Network has many components intertwined, whose contributions are not obvious in such a complex architecture. This paper presents an extensive experimental investigation of variants of the Ladder Network in which we replaced or removed individual components to learn about their relative importance. For semi-supervised tasks, we conclude that the most important contribution is made by the lateral connections, followed by the application of noise, and the choice of what we refer to as the 'combinator function'. As the number of labeled training examples increases, the lateral connections and the reconstruction criterion become less important, with most of the generalization improvement coming from the injection of noise in each layer. Finally, we introduce a combinator function that reduces test error rates on Permutation-Invariant MNIST to 0.57% for the supervised setting, and to 0.97% and 1.0% for semi-supervised settings with 1000 and 100 labeled examples, respectively.