Portrait of Gabriel Huang is unavailable

Gabriel Huang

Alumni

Publications

Indirect Prompt Injections: Are Firewalls All You Need, or Stronger Benchmarks?
Kevin Kasa
Graham W. Taylor
Krishnamurthy Dj Dvijotham
Alexandre Lacoste
AI agents are vulnerable to indirect prompt injection attacks, where malicious instructions embedded in external content or tool outputs cau… (see more)se unintended or harmful behavior. Inspired by the well-established concept of firewalls, we show that a simple, modular and model-agnostic defense operating at the agent--tool interface achieves perfect security (0% or the lowest possible attack success rate) with high utility (task success rate) across four public benchmarks: AgentDojo, Agent Security Bench, InjecAgent and tau-Bench, while achieving a state-of-the-art security-utility tradeoff compared to prior results. Specifically, we employ a defense based on two firewalls: a Tool-Input Firewall (Minimizer) and a Tool-Output Firewall (Sanitizer). Unlike prior complex approaches, this firewall defense makes minimal assumptions on the agent and can be deployed out-of-the-box, while maintaining strong performance without compromising utility. However, our analysis also reveals critical limitations in these existing benchmarks, including flawed success metrics, implementation bugs, and most importantly, weak attacks, hindering significant progress in the field. To foster more meaningful progress, we present targeted fixes to these issues for AgentDojo and Agent Security Bench while proposing best-practices for more robust benchmark design. Further, we demonstrate that although these firewalls push the state-of-the-art on existing benchmarks, it is still possible to bypass them in practice, underscoring the need to incorporate stronger attacks in security benchmarks. Overall, our work shows that existing agentic security benchmarks are easily saturated by a simple approach and highlights the need for stronger agentic security benchmarks with carefully chosen evaluation metrics and strong adaptive attacks.
DoomArena: A framework for Testing AI Agents Against Evolving Security Threats
Mihir Bansal
Chandra Kiran Reddy Evuru
Avinandan Bose
Maryam Fazel
Alexandre Lacoste
Jason Stanley
Krishnamurthy Dj Dvijotham
We present DoomArena, a security evaluation framework for AI agents. DoomArena is designed on three principles: 1) It is a plug-in framework… (see more) and integrates easily into realistic agentic frameworks like BrowserGym (for web agents) and
DoomArena: A framework for Testing AI Agents Against Evolving Security Threats
Mihir Bansal
Chandra Kiran Reddy Evuru
Avinandan Bose
Maryam Fazel
Jason Stanley
Alexandre Lacoste
Krishnamurthy Dj Dvijotham
TapeAgents: a Holistic Framework for Agent Development and Optimization
Nicolas Gontier
Ehsan Kamalloo
Rafael Pardinas
Alex Pich'e
Torsten Scholak
Oleh Shliazhko
Jordan Prince Tremblay
Soham Parikh
Mitul Tiwari
Quaizar Vohra
We present TapeAgents, an agent framework built around a granular, structured log tape of the agent session that also plays the role of the … (see more)session's resumable state. In TapeAgents we leverage tapes to facilitate all stages of the LLM Agent development lifecycle. The agent reasons by processing the tape and the LLM output to produce new thought and action steps and append them to the tape. The environment then reacts to the agent's actions by likewise appending observation steps to the tape. By virtue of this tape-centred design, TapeAgents can provide AI practitioners with holistic end-to-end support. At the development stage, tapes facilitate session persistence, agent auditing, and step-by-step debugging. Post-deployment, one can reuse tapes for evaluation, fine-tuning, and prompt-tuning; crucially, one can adapt tapes from other agents or use revised historical tapes. In this report, we explain the TapeAgents design in detail. We demonstrate possible applications of TapeAgents with several concrete examples of building monolithic agents and multi-agent teams, of optimizing agent prompts and finetuning the agent's LLM. We present tooling prototypes and report a case study where we use TapeAgents to finetune a Llama-3.1-8B form-filling assistant to perform as well as GPT-4o while being orders of magnitude cheaper. Lastly, our comparative analysis shows that TapeAgents's advantages over prior frameworks stem from our novel design of the LLM agent as a resumable, modular state machine with a structured configuration, that generates granular, structured logs and that can transform these logs into training text -- a unique combination of features absent in previous work.
TapeAgents: a Holistic Framework for Agent Development and Optimization
Nicolas Gontier
Ehsan Kamalloo
Rafael Pardinas
Alex Pich'e
Torsten Scholak
Oleh Shliazhko
Jordan Prince Tremblay
Soham Parikh
Mitul Tiwari
Quaizar Vohra
We present TapeAgents, an agent framework built around a granular, structured log tape of the agent session that also plays the role of the … (see more)session's resumable state. In TapeAgents we leverage tapes to facilitate all stages of the LLM Agent development lifecycle. The agent reasons by processing the tape and the LLM output to produce new thought and action steps and append them to the tape. The environment then reacts to the agent's actions by likewise appending observation steps to the tape. By virtue of this tape-centred design, TapeAgents can provide AI practitioners with holistic end-to-end support. At the development stage, tapes facilitate session persistence, agent auditing, and step-by-step debugging. Post-deployment, one can reuse tapes for evaluation, fine-tuning, and prompt-tuning; crucially, one can adapt tapes from other agents or use revised historical tapes. In this report, we explain the TapeAgents design in detail. We demonstrate possible applications of TapeAgents with several concrete examples of building monolithic agents and multi-agent teams, of optimizing agent prompts and finetuning the agent's LLM. We present tooling prototypes and report a case study where we use TapeAgents to finetune a Llama-3.1-8B form-filling assistant to perform as well as GPT-4o while being orders of magnitude cheaper. Lastly, our comparative analysis shows that TapeAgents's advantages over prior frameworks stem from our novel design of the LLM agent as a resumable, modular state machine with a structured configuration, that generates granular, structured logs and that can transform these logs into training text -- a unique combination of features absent in previous work.
TapeAgents: a Holistic Framework for Agent Development and Optimization
Nicolas Gontier
Ehsan Kamalloo
Rafael Pardinas
Torsten Scholak
Oleh Shliazhko
Jordan Prince Tremblay
Soham Parikh
Mitul Tiwari
Quaizar Vohra
We present TapeAgents, an agent framework built around a granular, structured log tape of the agent session that also plays the role of the … (see more)session's resumable state. In TapeAgents we leverage tapes to facilitate all stages of the LLM Agent development lifecycle. The agent reasons by processing the tape and the LLM output to produce new thought and action steps and append them to the tape. The environment then reacts to the agent's actions by likewise appending observation steps to the tape. By virtue of this tape-centred design, TapeAgents can provide AI practitioners with holistic end-to-end support. At the development stage, tapes facilitate session persistence, agent auditing, and step-by-step debugging. Post-deployment, one can reuse tapes for evaluation, fine-tuning, and prompt-tuning; crucially, one can adapt tapes from other agents or use revised historical tapes. In this report, we explain the TapeAgents design in detail. We demonstrate possible applications of TapeAgents with several concrete examples of building monolithic agents and multi-agent teams, of optimizing agent prompts and finetuning the agent's LLM. We present tooling prototypes and report a case study where we use TapeAgents to finetune a Llama-3.1-8B form-filling assistant to perform as well as GPT-4o while being orders of magnitude cheaper. Lastly, our comparative analysis shows that TapeAgents's advantages over prior frameworks stem from our novel design of the LLM agent as a resumable, modular state machine with a structured configuration, that generates granular, structured logs and that can transform these logs into training text -- a unique combination of features absent in previous work.
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
A Survey of Self-Supervised and Few-Shot Object Detection
Issam Hadj Laradji
David Vazquez
Pau Rodriguez
Labeling data is often expensive and time-consuming, especially for tasks such as object detection and instance segmentation, which require … (see more)dense labeling of the image. While few-shot object detection is about training a model on novel (unseen) object classes with little data, it still requires prior training on many labeled examples of base (seen) classes. On the other hand, self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection. Combining few-shot and self-supervised object detection is a promising research direction. In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection. Then, we give our main takeaways and discuss future research directions. Project page: https://gabrielhuang.github.io/fsod-survey/.
A Survey of Self-Supervised and Few-Shot Object Detection
Issam Hadj Laradji
David Vazquez
Pau Rodriguez
Labeling data is often expensive and time-consuming, especially for tasks such as object detection and instance segmentation, which require … (see more)dense labeling of the image. While few-shot object detection is about training a model on novel (unseen) object classes with little data, it still requires prior training on many labeled examples of base (seen) classes. On the other hand, self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection. Combining few-shot and self-supervised object detection is a promising research direction. In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection. Then, we give our main takeaways and discuss future research directions. Project page: https://gabrielhuang.github.io/fsod-survey/.