Portrait de Julien Cohen-Adad

Julien Cohen-Adad

Membre académique associé
Professeur agrégé, Polytechnique Montréal, Département de génie électrique
Professeur asssocié, Université de Montréal, Département de neurosciences
Sujets de recherche
Apprentissage automatique médical

Biographie

Julien Cohen-Adad est professeur à Polytechnique Montréal et directeur associé de l'Unité de neuro-imagerie fonctionnelle de l'Université de Montréal. Il est également titulaire de la Chaire de recherche du Canada en imagerie par résonance magnétique quantitative. Ses recherches portent sur l'avancement des méthodes de neuro-imagerie avec l'aide de l'IA. Voici quelques exemples de ses projets :

- Formation multimodale pour les tâches d'imagerie médicale (segmentation des pathologies, diagnostic, etc.);

- Ajout d'un a priori issu de la physique de l'IRM pour améliorer la généralisation des modèles;

- Incorporation de mesures d'incertitude pour traiter la variabilité interévaluateurs;

- Stratégies d'apprentissage continu lorsque le partage des données est restreint;

- Introduction des méthodes d'IA dans la routine de la radiologie clinique par l’intermédiaire de solutions logicielles conviviales.

Le professeur Cohen-Adad dirige également de nombreux projets de logiciels libres qui profitent à la communauté scientifique et clinique. Plus de détails sur https://neuro.polymtl.ca/software.html.

En résumé, Julien aime : l'IRM avec des aimants puissants, la neuro-imagerie, la programmation et la science ouverte!

Étudiants actuels

Maîtrise recherche - Polytechnique
Co-superviseur⋅e :
Doctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - Polytechnique
Maîtrise recherche - Polytechnique
Doctorat - Polytechnique
Doctorat - Polytechnique
Collaborateur·rice de recherche
Stagiaire de recherche - Polytechnique
Stagiaire de recherche - Polytechnique
Maîtrise recherche - UdeM
Maîtrise recherche - Polytechnique
Postdoctorat - Polytechnique

Publications

Erratum to: Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps (Magn Reson Med. 2022;87:781‐790.)
Fang Frank Yu
Susie Yi Huang
Ashwin Kumar
Thomas Witzel
Congyu Liao
Tanguy Duval
Berkin Bilgic
Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps
Fang Frank Yu
Susie Yi Huang
Thomas Witzel
Ashwin Kumar
Congyu Liao
Tanguy Duval
Berkin Bilgic
Purpose A major obstacle to the clinical implementation of quantitative MR is the lengthy acquisition time required to derive multi-contrast… (voir plus) parametric maps. We sought to reduce the acquisition time for quantitative susceptibility mapping (QSM) and macromolecular tissue volume (MTV) by acquiring both contrasts simultaneously by leveraging their redundancies. The Joint Virtual Coil concept with generalized autocalibrating partially parallel acquisitions (JVC-GRAPPA) was applied to reduce acquisition time further. Methods Three adult volunteers were imaged on a 3T scanner using a multi-echo 3D GRE sequence acquired at three head orientations. MTV, QSM, R2*, T1, and proton density maps were reconstructed. The same sequence (GRAPPA R=4) was performed in subject #1 with a single head orientation for comparison. Fully sampled data was acquired in subject #2, from which retrospective undersampling was performed (R=6 GRAPPA and R=9 JVC-GRAPPA). Prospective undersampling was performed in subject #3 (R=6 GRAPPA and R=9 JVC-GRAPPA) using gradient blips to shift k-space sampling in later echoes. Results Subject #1’s multi-orientation and single-orientation MTV maps were not significantly different based on RMSE. For subject #2, the retrospectively undersampled JVC-GRAPPA and GRAPPA generated similar results as fully sampled data. This approach was validated with the prospectively undersampled images in subject #3. Using QSM, R2*, and MTV, the contributions of myelin and iron content to susceptibility was estimated. Conclusion We have developed a novel strategy to simultaneously acquire data for the reconstruction of five intrinsically co-registered 1-mm isotropic resolution multi-parametric maps, with a scan time of 6 minutes using JVC-GRAPPA.
Effectiveness of regional diffusion MRI measures in distinguishing multiple sclerosis abnormalities within the cervical spinal cord
Haykel Snoussi
Olivier Commowick
Benoit Combes
Elise Bannier
Slimane Tounekti
Anne Sophie Kerbrat
Christian Barillot
Emmanuel Caruyer
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is… (voir plus) widely used for MS diagnosis and clinical follow‐up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball‐and‐Stick models.
Dynamic shimming in the cervical spinal cord for multi-echo gradient-echo imaging at 3 T
Eva Alonso‐Ortiz
Daniel Papp
Alain D’astous
Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps
Fang Frank Yu
Susie Y. Huang
T. Witzel
Ashwin S. Kumar
Congyu Liao
Tanguy Duval
Berkin Bilgic
Purpose A major obstacle to the clinical implementation of quantitative MR is the lengthy acquisition time required to derive multi-contrast… (voir plus) parametric maps. We sought to reduce the acquisition time for quantitative susceptibility mapping (QSM) and macromolecular tissue volume (MTV) by acquiring both contrasts simultaneously by leveraging their redundancies. The Joint Virtual Coil concept with generalized autocalibrating partially parallel acquisitions (JVC-GRAPPA) was applied to reduce acquisition time further. Methods Three adult volunteers were imaged on a 3T scanner using a multi-echo 3D GRE sequence acquired at three head orientations. MTV, QSM, R2*, T1, and proton density maps were reconstructed. The same sequence (GRAPPA R=4) was performed in subject #1 with a single head orientation for comparison. Fully sampled data was acquired in subject #2, from which retrospective undersampling was performed (R=6 GRAPPA and R=9 JVC-GRAPPA). Prospective undersampling was performed in subject #3 (R=6 GRAPPA and R=9 JVC-GRAPPA) using gradient blips to shift k-space sampling in later echoes. Results Subject #1’s multi-orientation and single-orientation MTV maps were not significantly different based on RMSE. For subject #2, the retrospectively undersampled JVC-GRAPPA and GRAPPA generated similar results as fully sampled data. This approach was validated with the prospectively undersampled images in subject #3. Using QSM, R2*, and MTV, the contributions of myelin and iron content to susceptibility was estimated. Conclusion We have developed a novel strategy to simultaneously acquire data for the reconstruction of five intrinsically co-registered 1-mm isotropic resolution multi-parametric maps, with a scan time of 6 minutes using JVC-GRAPPA.