Portrait de Guillaume Rabusseau

Guillaume Rabusseau

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond
Apprentissage sur graphes
Factorisation tensorielle
Modèles probabilistes
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Systèmes de recommandation
Théorie de l'apprentissage automatique
Théorie de l'information quantique

Biographie

Depuis septembre 2018, je suis professeur adjoint à Mila – Institut québécois d’intelligence artificielle et au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal (UdeM). Je suis titulaire d’une chaire de recherche en IA Canada-CIFAR depuis mars 2019. Avant de me joindre à l’UdeM, j’ai été chercheur postdoctoral au laboratoire de raisonnement et d'apprentissage de l'Université McGill, où j'ai travaillé avec Prakash Panangaden, Joelle Pineau et Doina Precup.

J'ai obtenu mon doctorat en 2016 à l’Université d’Aix-Marseille (AMU), où j'ai travaillé dans l'équipe Qarma (apprentissage automatique et multimédia), sous la supervision de François Denis et Hachem Kadri. Auparavant, j'ai obtenu une maîtrise en informatique fondamentale de l'AMU et une licence en informatique de la même université en formation à distance.

Je m'intéresse aux méthodes de tenseurs pour l'apprentissage automatique et à la conception d'algorithmes d'apprentissage pour les données structurées par l’utilisation de l'algèbre linéaire et multilinéaire (par exemple, les méthodes spectrales).

Étudiants actuels

Postdoctorat - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Postdoctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :