Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (voir plus)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (voir plus)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.