We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (see more)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (see more)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.