Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (see more)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical probl… (see more)ems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.