Portrait de Farimah Poursafaei

Farimah Poursafaei

Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage sur graphes
Exploration des données
Graphes de connaissances
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Systèmes de recommandation

Publications

TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Tran Gia Bao Ngo
Jure Leskovec
Michael M. Bronstein
Matthias Fey
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like Py… (voir plus)Torch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm
TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Tran Gia Bao Ngo
Jure Leskovec
Michael M. Bronstein
Matthias Fey
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like Py… (voir plus)Torch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm
TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Tran Gia Bao Ngo
Jure Leskovec
Michael M. Bronstein
Matthias Fey
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like Py… (voir plus)Torch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm
Temporal Graph Learning Workshop
Daniele Zambon
Andrea Cini
Micheal Bronstein
Temporal Graph Learning Workshop
Daniele Zambon
Andrea Cini
Michael Bronstein
Temporal Graph Learning Workshop
Daniele Zambon
Andrea Cini
Micheal Bronstein
TGM: A Modular Framework for Machine Learning on Temporal Graphs
While deep learning on static graphs has been revolutionized by standardized libraries like PyTorch Geometric and DGL, machine learning on T… (voir plus)emporal Graphs (TG), networks that evolve over time, lacks comparable software infrastructure. Existing TG libraries are limited in scope, focusing on a single method category or specific algorithms. We introduce Temporal Graph Modelling (TGM), a comprehensive framework for machine learning on temporal graphs to address this gap. Through a modular architecture, TGM is the first library to support both discrete and continuous-time TG methods and implements a wide range of TG methods. The TGM framework combines an intuitive front-end API with an optimized backend storage, enabling reproducible research and efficient experimentation at scale. Key features include graph-level optimizations for offline training and built-in performance profiling capabilities. Through extensive benchmarking on five real-world networks, TGM is up to 6 times faster than the widely used DyGLib library on TGN and TGAT models and up to 8 times faster than the UTG framework for converting edges into coarse-grained snapshots.
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Nia Dickson
Karush Suri
Philip Fradkin
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have obse… (voir plus)rved a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 38 tasks, outclassing previous large models. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
Many real world graphs are inherently dynamic, constantly evolving with node and edge additions. These graphs can be represented by temporal… (voir plus) graphs, either through a stream of edge events or a sequence of graph snapshots. Until now, the development of machine learning methods for both types has occurred largely in isolation, resulting in limited experimental comparison and theoretical crosspollination between the two. In this paper, we introduce Unified Temporal Graph (UTG), a framework that unifies snapshot-based and event-based machine learning models under a single umbrella, enabling models developed for one representation to be applied effectively to datasets of the other. We also propose a novel UTG training procedure to boost the performance of snapshot-based models in the streaming setting. We comprehensively evaluate both snapshot and event-based models across both types of temporal graphs on the temporal link prediction task. Our main findings are threefold: first, when combined with UTG training, snapshot-based models can perform competitively with event-based models such as TGN and GraphMixer even on event datasets. Second, snapshot-based models are at least an order of magnitude faster than most event-based models during inference. Third, while event-based methods such as NAT and DyGFormer outperforms snapshot-based methods on both types of temporal graphs, this is because they leverage joint neighborhood structural features thus emphasizing the potential to incorporate these features into snapshotbased models as well. These findings highlight the importance of comparing model architectures independent of the data format and suggest the potential of combining the efficiency of snapshot-based models with the performance of event-based models in the future.
MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
Kiarash Shamsi
Tran Gia Bao Ngo
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
Kiarash Shamsi
Tran Gia Bao Ngo
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora