Portrait de Arian Hosseini n'est pas disponible

Arian Hosseini

Doctorat - UdeM
Superviseur⋅e principal⋅e
Sujets de recherche
Traitement du langage naturel

Publications

V-STaR: Training Verifiers for Self-Taught Reasoners
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to… (voir plus) improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
V-STaR: Training Verifiers for Self-Taught Reasoners
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to… (voir plus) improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
Joint Prompt Optimization of Stacked LLMs using Variational Inference
Eric Yuan
Xingdi Yuan
Marc-Alexandre Côté
Matheus Pereira
Adam Trischler
Ziang Xiao
Friederike Niedtner
Large language models (LLMs) can be seen as atomic units of computation mapping sequences to a distribution over sequences. Thus, they can b… (voir plus)e seen as stochastic language layers in a language network, where the learnable parameters are the natural language prompts at each layer. By stacking two such layers and feeding the output of one layer to the next, we obtain a Deep Language Network (DLN). We first show how to effectively perform prompt optimization for a 1-Layer language network (DLN-1). Then, we present an extension that applies to 2-layer DLNs (DLN-2), where two prompts must be learned. The key idea is to consider the output of the first layer as a latent variable, which requires inference, and prompts to be learned as the parameters of the generative distribution. We first test the effectiveness of DLN-1 in multiple reasoning and natural language understanding tasks. Then, we show that DLN-2 can reach higher performance than a single layer, showing promise that we might reach comparable performance to GPT-4, even when each LLM in the network is smaller and less powerful.
On the Compositional Generalization Gap of In-Context Learning
Pretrained large generative language models have shown great performance on many tasks, but exhibit low compositional generalization abiliti… (voir plus)es. Scaling such models has been shown to improve their performance on various NLP tasks even just by conditioning them on a few examples to solve the task without any fine-tuning (also known as in-context learning). In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning. In the ID settings, the demonstrations are from the same split (\textit{test} or \textit{train}) that the model is being evaluated on, and in the OOD settings, they are from the other split. We look at how the relative generalization gap of in-context learning evolves as models are scaled up. We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets, CFQ, SCAN and GeoQuery with different number of exemplars, and observe a trend of decreasing relative generalization gap as models are scaled up.
Understanding by Understanding Not: Modeling Negation in Language Models
Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language mode… (voir plus)ls often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.
Ordered Memory
Yikang Shen
Shawn Tan
Zhouhan Lin
Stack-augmented recurrent neural networks (RNNs) have been of interest to the deep learning community for some time. However, the difficult… (voir plus)y of training memory models remains a problem obstructing the widespread use of such models. In this paper, we propose the Ordered Memory architecture. Inspired by Ordered Neurons (Shen et al., 2018), we introduce a new attention-based mechanism and use its cumulative probability to control the writing and erasing operation of the memory. We also introduce a new Gated Recursive Cell to compose lower-level representations into higher-level representation. We demonstrate that our model achieves strong performance on the logical inference task (Bowman et al., 2015) and the ListOps (Nangia and Bowman, 2018) task. We can also interpret the model to retrieve the induced tree structure, and find that these induced structures align with the ground truth. Finally, we evaluate our model on the Stanford Sentiment Treebank tasks (Socher et al., 2013), and find that it performs comparatively with the state-of-the-art methods in the literature.