Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Combining Model-based and Model-free RL via Multi-step Control Variates
Tong Che
Yuchen Lu
George Tucker
Surya Bhupatiraju
Shane Gu
Sergey Levine
Learning Generative Models with Locally Disentangled Latent Factors
One of the most successful techniques in generative models has been decomposing a complicated generation task into a series of simpler gener… (see more)ation tasks. For example, generating an image at a low resolution and then learning to refine that into a high resolution image often improves results substantially. Here we explore a novel strategy for decomposing generation for complicated objects in which we first generate latent variables which describe a subset of the observed variables, and then map from these latent variables to the observed space. We show that this allows us to achieve decoupled training of complicated generative models and present both theoretical and experimental results supporting the benefit of such an approach.
Finding Flatter Minima with SGD
Stanisław Jastrzębski
Zac Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Amos Storkey
Graph Priors for Deep Neural Networks
Francis Dutil
Joseph Paul Cohen
Martin Weiss
Georgy Derevyanko
In this work we explore how gene-gene interaction graphs can be used as a prior for the representation of a model to construct features base… (see more)d on known interactions between genes. Most existing machine learning work on graphs focuses on building models when data is confined to a graph structure. In this work we focus on using the information from a graph to build better representations in our models. We use the percolate task, determining if a path exists across a grid for a set of node values, as a proxy for gene pathways. We create variants of the percolate task to explore where existing methods fail. We test the limits of existing methods in order to determine what can be improved when applying these methods to a real task. This leads us to propose new methods based on Graph Convolutional Networks (GCN) that use pooling and dropout to deal with noise in the graph prior.
SGD S MOOTHS THE S HARPEST D IRECTIONS
Stanisław Jastrzębski
Zac Kenton
Nicolas Ballas
Asja Fischer
Amos Storkey
Stochastic gradient descent (SGD) is able to find regions that generalize well, even in drastically over-parametrized models such as deep ne… (see more)ural networks. We observe that noise in SGD controls the spectral norm and conditioning of the Hessian throughout the training. We hypothesize the cause of this phenomenon is due to the dynamics of neurons saturating their non-linearity along the largest curvature directions, thus leading to improved conditioning.
Extending the Framework of Equilibrium Propagation to General Dynamics
Benjamin Scellier
Anirudh Goyal
Jonathan Binas
Thomas Mesnard
A Deep Reinforcement Learning Chatbot (Short Version)
Iulian V. Serban
Chinnadhurai Sankar
Mathieu Germain
Saizheng Zhang
Zhouhan Lin
Sandeep Subramanian
Taesup Kim
Michael Pieper
Nan Rosemary Ke
Sai Rajeswar
Alexandre De Brébisson
Jose Sotelo
Dendi Suhubdy
Vincent Michalski
Alexandre Nguyen
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon … (see more)Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through both speech and text. The system consists of an ensemble of natural language generation and retrieval models, including neural network and template-based models. By applying reinforcement learning to crowdsourced data and real-world user interactions, the system has been trained to select an appropriate response from the models in its ensemble. The system has been evaluated through A/B testing with real-world users, where it performed significantly better than other systems. The results highlight the potential of coupling ensemble systems with deep reinforcement learning as a fruitful path for developing real-world, open-domain conversational agents.
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
Aristide Baratin
Recent research showed that deep neural networks are highly sensitive to so-called adversarial perturbations, which are tiny perturbations o… (see more)f the input data purposely designed to fool a machine learning classifier. Most classification models, including deep learning models, are highly vulnerable to adversarial attacks. In this work, we investigate a procedure to improve adversarial robustness of deep neural networks through enforcing representation invariance. The idea is to train the classifier jointly with a discriminator attached to one of its hidden layer and trained to filter the adversarial noise. We perform preliminary experiments to test the viability of the approach and to compare it to other standard adversarial training methods.
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Dia
Sungwoong Kim
Sungjin Ahn
Learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning due to the model uncertainty … (see more)inherent in the problem. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines scalable gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. During fast adaptation, the method is capable of learning complex uncertainty structure beyond a point estimate or a simple Gaussian approximation. In addition, a robust Bayesian meta-update mechanism with a new meta-loss prevents overfitting during meta-update. Remaining an efficient gradient-based meta-learner, the method is also model-agnostic and simple to implement. Experiment results show the accuracy and robustness of the proposed method in various tasks: sinusoidal regression, image classification, active learning, and reinforcement learning.
BigBrain: 1D convolutional neural networks for automated sementation of cortical layers
Konrad Wagstyl
Claude Lepage
Karl Zilles
Sebastian Bludau
G. Cucurul
Alan C. Evans
Paul C Fletcher
Joseph Paul Cohen
Stéphanie Larocque
Thomas Funck
Katrin Amunts
Boundary Seeking GANs
Athul Jacob
Adam Trischler
Gerry Che
Kyunghyun Cho
Generative adversarial networks are a learning framework that rely on training a discriminator to estimate a measure of difference between a… (see more) target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.
ChatPainter: Improving Text to Image Generation using Dialogue
Shikhar Sharma
Dendi Suhubdy
Vincent Michalski
Synthesizing realistic images from text descriptions on a dataset like Microsoft Common Objects in Context (MS COCO), where each image can c… (see more)ontain several objects, is a challenging task. Prior work has used text captions to generate images. However, captions might not be informative enough to capture the entire image and insufficient for the model to be able to understand which objects in the images correspond to which words in the captions. We show that adding a dialogue that further describes the scene leads to significant improvement in the inception score and in the quality of generated images on the MS COCO dataset.