Portrait of Bhargav Kanuparthi is unavailable

Bhargav Kanuparthi

Alumni

Publications

Untangling tradeoffs between recurrence and self-attention in neural networks
Attention and self-attention mechanisms, inspired by cognitive processes, are now central to state-of-the-art deep learning on sequential ta… (see more)sks. However, most recent progress hinges on heuristic approaches with limited understanding of attention's role in model optimization and computation, and rely on considerable memory and computational resources that scale poorly. In this work, we present a formal analysis of how self-attention affects gradient propagation in recurrent networks, and prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies. Building on these results, we propose a relevancy screening mechanism, inspired by the cognitive process of memory consolidation, that allows for a scalable use of sparse self-attention with recurrence. While providing guarantees to avoid vanishing gradients, we use simple numerical experiments to demonstrate the tradeoffs in performance and computational resources by efficiently balancing attention and recurrence. Based on our results, we propose a concrete direction of research to improve scalability of attentive networks.
Learning Long-term Dependencies Using Cognitive Inductive Biases in Self-attention RNNs
Attention and self-attention mechanisms, inspired by cognitive processes, are now central to state-of-the-art deep learning on sequential ta… (see more)sks. However, most recent progress hinges on heuristic approaches that rely on considerable memory and computational resources that scale poorly. In this work, we propose a relevancy screening mechanism, inspired by the cognitive process of memory consolidation, that allows for a scalable use of sparse self-attention with recurrence. We use simple numerical experiments to demonstrate that this mechanism helps enable recurrent systems on generalization and transfer learning tasks. Based on our results, we propose a concrete direction of research to improve scalability and generalization of attentive recurrent networks.
Untangling tradeoffs between recurrence and self-attention in artificial neural networks
h-detach: Modifying the LSTM Gradient Towards Better Optimization
Recurrent neural networks are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident i… (see more)n tasks where the information needed to correctly solve them exist over long time scales, because EVGP prevents important gradient components from being back-propagated adequately over a large number of steps. We introduce a simple stochastic algorithm (\textit{h}-detach) that is specific to LSTM optimization and targeted towards addressing this problem. Specifically, we show that when the LSTM weights are large, the gradient components through the linear path (cell state) in the LSTM computational graph get suppressed. Based on the hypothesis that these components carry information about long term dependencies (which we show empirically), their suppression can prevent LSTMs from capturing them. Our algorithm\footnote{Our code is available at this https URL.} prevents gradients flowing through this path from getting suppressed, thus allowing the LSTM to capture such dependencies better. We show significant improvements over vanilla LSTM gradient based training in terms of convergence speed, robustness to seed and learning rate, and generalization using our modification of LSTM gradient on various benchmark datasets.