Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Scientific Director, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific director of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Research Intern - McGill University
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université du Québec à Rimouski
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - UQAR
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Barcelona University
Research Intern - Université de Montréal
Research Intern - Université de Montréal
Research Intern
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni
Collaborating Alumni - Imperial College London
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni
Independent visiting researcher - Technical University of Munich
Postdoctorate - Polytechnique Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Combining Parameter-efficient Modules for Task-level Generalisation
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
Ling Pan
Nikolay Malkin
Dinghuai Zhang
Equivariance With Learned Canonicalization Functions
Sékou-Oumar Kaba
Arnab Kumar Mondal
Yan Zhang
Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations… (see more). In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than doing it using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves great performance in practice.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers at scale, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In challenging reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-space models, transfer functions, and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets WikiText103 and The Pile, reaching Transformer quality with a 20% reduction in training compute required at sequence length 2k. Hyena operators are 2x faster than highly optimized attention at sequence length 8k, with speedups of 100x at 64k.
Interventional Causal Representation Learning
Kartik Ahuja
Yixin Wang
Divyat Mahajan
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observa… (see more)tional data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect
Multi-Objective GFlowNets
Moksh J. Jain
Sharath Chandra Raparthy
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Santiago Miret
Emmanuel Bengio
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learni… (see more)ng such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.
Catalyzing next-generation Artificial Intelligence through NeuroAI
Anthony Zador
Sean Escola
Bence Ölveczky
Kwabena Boahen
Matthew Botvinick
Dmitri Chklovskii
Anne Churchland
Claudia Clopath
James DiCarlo
Surya
Surya Ganguli
Jeff Hawkins
Konrad Paul Kording
Alexei Koulakov
Yann LeCun
Timothy P. Lillicrap
Adam
Adam Marblestone … (see 9 more)
Bruno Olshausen
Alexandre Pouget
Cristina Savin
Terrence Sejnowski
Eero Simoncelli
Sara Solla
David Sussillo
Andreas S. Tolias
Doris Tsao
Proactive Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
andrew williams
Victor Schmidt
Pierre-Luc St-Charles
Akshay Patel
Yang Zhang
Bernhard Schölkopf
A108 AUTOMATED DETECTION OF ILEOCECAL VALVE, APPENDICEAL ORIFICE, AND POLYP DURING COLONOSCOPY USING A DEEP LEARNING MODEL
Mahsa Taghiakbari
Sina Hamidi Ghalehjegh
E Jehanno
Tess Berthier
Lisa Di Jorio
Alan Barkun
Eric Deslandres
Simon Bouchard
Sacha Sidani
Daniel von Renteln
DEUP: Direct Epistemic Uncertainty Prediction
Moksh J. Jain
Salem Lahlou
Hadi Nekoei
Victor I Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on… (see more) using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
E-Forcing: Improving Autoregressive Models by Treating it as an Energy-Based One
Yezhen Wang
Tong Che
Bo Li
Kaitao Song
Hengzhi Pei
Dongsheng Li
Autoregressive generative models are commonly used to solve tasks involving sequential data. They have, however, been plagued by a slew of i… (see more)nherent flaws due to the intrinsic characteristics of chain-style conditional modeling (e.g., exposure bias or lack of long-range coherence), severely limiting their ability to model distributions properly. In this paper, we propose a unique method termed E-Forcing for training autoregressive generative models that takes advantage of a well-designed energy-based learning objective. By leveraging the extra degree of freedom of the softmax operation, we are allowed to make the autoregressive model itself an energy-based model for measuring the likelihood of input without introducing any extra parameters. Furthermore, we show that with the help of E-Forcing, we can alleviate the above flaws for autoregressive models. Extensive empirical results, covering numerous benchmarks demonstrate the effectiveness of the proposed approach.