Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :

Publications

Object-centric Compositional Imagination for Visual Abstract Reasoning
Pau Rodriguez
Perouz Taslakian
David Vazquez
Like humans devoid of imagination, current machine learning systems lack the ability to adapt to new, unexpected situations by foreseeing th… (see more)em, which makes them unable to solve new tasks by analogical reasoning. In this work, we introduce a new compositional imagination framework that improves a model's ability to generalize. One of the key components of our framework is object-centric inductive biases that enables models to perceive the environment as a series of objects, properties, and transformations. By composing these key ingredients, it is possible to generate new unseen tasks that, when used to train the model, improve generalization. Experiments on a simplified version of the Abstraction and Reasoning Corpus (ARC) demonstrate the effectiveness of our framework.
A New Era: Intelligent Tutoring Systems Will Transform Online Learning for Millions
Francois St-Hilaire
Dung D. Vu
Antoine Frau
Nathan J. Burns
Farid Faraji
Joseph Potochny
Stephane Robert
Arnaud Roussel
Selene Zheng
Taylor Glazier
Junfel Vincent Romano
Robert Belfer
Muhammad Shayan
Ariella Smofsky
Tommy Delarosbil
Seulmin Ahn
Simon Eden-Walker
Kritika Sony
Ansona Onyi Ching
Sabina Elkins … (see 11 more)
A. Stepanyan
Adela Matajova
Victor Chen
Hossein Sahraei
Robert Larson
N. Markova
Andrew Barkett
Iulian V. Serban
Ekaterina Kochmar
CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding
Suzanne Ackloo
R. Al-Awar
Rommie Elizabeth Amaro
C. Arrowsmith
Hatylas F. Z. Azevedo
R. Batey
U. Betz
Cristian G. Bologa
J. Chodera
Wendy Cornell
Ian Dunham
G. Ecker
Kristina Edfeldt
A. Edwards
M. Gilson
Cláudia Regina Gordijo
G. Hessler
Alexander Hillisch
Anders C Hogner … (see 19 more)
John Joseph Irwin
J. Jansen
Daniel Kuhn
Andrew R. Leach
Alpha A. Lee
Uta F. Lessel
J. Moult
Ingo Muegge
Tudor I. Oprea
Ben Perry
Patrick F. Riley
K. Saikatendu
Vijayaratnam Santhakumar
Matthieu Schapira
Cora Scholten
M. Todd
Masoud Vedadi
Andrea Volkamer
T. Willson
RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
S. SurajM
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
N. Valiante
Almer M. van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke Lee Lairson
Jake P. Taylor-King
Tackling Climate Change with Machine Learning
Priya L. Donti
Lynn H. Kaack
Kelly Kochanski
Alexandre Lacoste
Kris Sankaran
Andrew Slavin Ross
Nikola Milojevic-Dupont
Natasha Jaques
Anna Waldman-Brown
Alexandra Luccioni
Evan David Sherwin
S. Karthik Mukkavilli
Konrad Paul Kording
Carla P. Gomes
Andrew Y. Ng
Demis Hassabis
John C. Platt
Felix Creutzig … (see 2 more)
Jennifer T Chayes
Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here… (see more) we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods
Victor Schmidt
Alexandra Luccioni
Mélisande Teng
Alexia Reynaud
Sunand Raghupathi
Gautier Cosne
Adrien Juraver
Vahe Vardanyan
Alex Hernandez-Garcia
Climate change is a major threat to humanity, and the actions required to prevent its catastrophic consequences include changes in both poli… (see more)cy-making and individual behaviour. However, taking action requires understanding the effects of climate change, even though they may seem abstract and distant. Projecting the potential consequences of extreme climate events such as flooding in familiar places can help make the abstract impacts of climate change more concrete and encourage action. As part of a larger initiative to build a website that projects extreme climate events onto user-chosen photos, we present our solution to simulate photo-realistic floods on authentic images. To address this complex task in the absence of suitable training data, we propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation. In this paper, we describe the details of our framework, thoroughly evaluate components of our architecture and demonstrate that our model is capable of robustly generating photo-realistic flooding.
Continuous-Time Meta-Learning with Forward Mode Differentiation
Drawing inspiration from gradient-based meta-learning methods with infinitely small gradient steps, we introduce Continuous-Time Meta-Learni… (see more)ng (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field. Specifically, representations of the inputs are meta-learned such that a task-specific linear classifier is obtained as a solution of an ordinary differential equation (ODE). Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous, as opposed to a fixed and discrete number of gradient steps. As a consequence, we can optimize the amount of adaptation necessary to solve a new task using stochastic gradient descent, in addition to learning the initial conditions as is standard practice in gradient-based meta-learning. Importantly, in order to compute the exact meta-gradients required for the outer-loop updates, we devise an efficient algorithm based on forward mode differentiation, whose memory requirements do not scale with the length of the learning trajectory, thus allowing longer adaptation in constant memory. We provide analytical guarantees for the stability of COMLN, we show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
Coordination Among Neural Modules Through a Shared Global Workspace
Anirudh Goyal
Aniket Rajiv Didolkar
Alex Lamb
Kartikeya Badola
Nan Rosemary Ke
Nasim Rahaman
Jonathan Binas
Charles Blundell
Michael Curtis Mozer
Deep learning has seen a movement away from representing examples with a monolithic hidden state towards a richly structured state. For exam… (see more)ple, Transformers segment by position, and object-centric architectures decompose images into entities. In all these architectures, interactions between different elements are modeled via pairwise interactions: Transformers make use of self-attention to incorporate information from other positions and object-centric architectures make use of graph neural networks to model interactions among entities. We consider how to improve on pairwise interactions in terms of global coordination and a coherent, integrated representation that can be used for downstream tasks. In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information through a common, bandwidth-limited communication channel. We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments. The proposed method includes a shared workspace through which communication among different specialist modules takes place but due to limits on the communication bandwidth, specialist modules must compete for access. We show that capacity limitations have a rational basis in that (1) they encourage specialization and compositionality and (2) they facilitate the synchronization of otherwise independent specialists.
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
Anh Tuan Luu
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard learning architectures for graphs. GNNs have been applied to numerous domains ranging … (see more)from quantum chemistry, recommender systems to knowledge graphs and natural language processing. A major issue with arbitrary graphs is the absence of canonical positional information of nodes, which decreases the representation power of GNNs to distinguish e.g. isomorphic nodes and other graph symmetries. An approach to tackle this issue is to introduce Positional Encoding (PE) of nodes, and inject it into the input layer, like in Transformers. Possible graph PE are Laplacian eigenvectors. In this work, we propose to decouple structural and positional representations to make easy for the network to learn these two essential properties. We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected (Transformer-like) GNNs, and observe a performance increase for molecular datasets, from 1.79% up to 64.14% when considering learnable PE for both GNN classes.
Properties from mechanisms: an equivariance perspective on identifiable representation learning
Kartik Ahuja
Jason Hartford
A key goal of unsupervised representation learning is ``inverting'' a data generating process to recover its latent properties. Existing wo… (see more)rk that provably achieves this goal relies on strong assumptions on relationships between the latent variables (e.g., independence conditional on auxiliary information). In this paper, we take a very different perspective on the problem and ask, ``Can we instead identify latent properties by leveraging knowledge of the mechanisms that govern their evolution?'' We provide a complete characterization of the sources of non-identifiability as we vary knowledge about a set of possible mechanisms. In particular, we prove that if we know the exact mechanisms under which the latent properties evolve, then identification can be achieved up to any equivariances that are shared by the underlying mechanisms. We generalize this characterization to settings where we only know some hypothesis class over possible mechanisms, as well as settings where the mechanisms are stochastic. We demonstrate the power of this mechanism-based perspective by showing that we can leverage our results to generalize existing identifiable representation learning results. These results suggest that by exploiting inductive biases on mechanisms, it is possible to design a range of new identifiable representation learning approaches.
Boosting Exploration in Multi-Task Reinforcement Learning using Adversarial Networks
Biasly: a machine learning based platform for automatic racial discrimination detection in online texts
David Bamman
Chris Dyer
Noah A. Smith. 2014
Steven Bird
Ewan Klein
Edward Loper
Nat-527
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova. 2019
Bert
Samuel Gehman
Suchin Gururangan
Maarten Sap
Dan Hendrycks
Kevin Gimpel. 2020
Gaussian
Alex Lamb
Di He … (see 22 more)
Anirudh Goyal
Guolin Ke
Feng Liao
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Yann LeCun
Bernhard E. Boser
J. Denker
Don-608 nie Henderson
Robin Howard
Wayne Hubbard
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Warning : this paper contains content that may 001 be offensive or upsetting. 002 Detecting hateful, toxic, and otherwise racist 003 or sexi… (see more)st language in user-generated online con-004 tents has become an increasingly important task 005 in recent years. Indeed, the anonymity, the 006 transience, the size of messages, and the dif-007 ficulty of management, facilitate the diffusion 008 of racist or hateful messages across the Inter-009 net. The critical influence of this cyber-racism 010 is no longer limited to social media, but also 011 has a significant effect on our society : corpo-012 rate business operation, users’ health, crimes, 013 etc. Traditional racist speech reporting chan-014 nels have proven inadequate due to the enor-015 mous explosion of information, so there is an 016 urgent need for a method to automatically and 017 promptly detect texts with racial discrimination. 018 We propose in this work, a machine learning-019 based approach to enable automatic detection 020 of racist text content over the internet. State-of-021 the-art machine learning models that are able 022 to grasp language structures are adapted in this 023 study. Our main contribution include 1) a large 024 scale racial discrimination data set collected 025 from three distinct sources and annotated ac-026 cording to a guideline developed by specialists, 027 2) a set of machine learning models with vari-028 ous architectures for racial discrimination de-029 tection, and 3) a web-browser-based software 030 that assist users to debias their texts when us-031 ing the internet. All these resources are made 032 publicly available.