Publications

A benchmark of individual auto-regressive models in a massive fMRI dataset
Fraçois Paugam
Basile Pinsard
Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individual idiosyn… (voir plus)crasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time series recorded during a natural video watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting state data marked the Chebnets’ ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual fMRI datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original nonlinear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.
BETAC: Bidirectional Encoder Transformer for Assembly Code Function Name Recovery
Guillaume Breyton
Mohd Saqib
Philippe Charland
Recovering function names from stripped binaries is a crucial and time-consuming task for software reverse engineering’ particularly in en… (voir plus)hancing network reliability, resilience, and security. This paper tackles the challenge of recovering function names in stripped binaries, a fundamental step in reverse engineering. The absence of syntactic information and the possibility of different code producing identical behavior complicate this task. To overcome these challenges, we introduce a novel model, the Bidirectional Encoder Transformer for Assembly Code (BETAC), leveraging a transformer-based architecture known for effectively processing sequential data. BETAC utilizes self-attention mechanisms and feed-forward networks to discern complex relationships within assembly code for precise function name prediction. We evaluated BETAC against various existing encoder and decoder models in diverse binary datasets, including benign and malicious codes in multiple formats. Our model demonstrated superior performance over previous techniques in certain metrics and showed resilience against code obfuscation.
Bidirectional Generative Pre-training for Improving Time Series Representation Learning
Ziyang Song
Qincheng Lu
He Zhu
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Causal Adversarial Perturbations for Individual Fairness and Robustness in Heterogeneous Data Spaces
Ahmad-reza Ehyaei
Kiarash Mohammadi
Amir-Hossein Karimi
S. Samadi
ChainBuddy: An AI-assisted Agent System for Helping Users Set up LLM Pipelines
Jingyue Zhang
Common Challenges of Deep Reinforcement Learning Applications Development: An Empirical Study
Mohammad Mehdi Morovati
Florian Tambon
Mina Taraghi
Amin Nikanjam
Connecting Weighted Automata, Tensor Networks and Recurrent Neural Networks through Spectral Learning
Consolidating Separate Degradations Model via Weights Fusion and Distillation
Dinesh Daultani
Real-world images prevalently contain different varieties of degradation, such as motion blur and luminance noise. Computer vision recogniti… (voir plus)on models trained on clean images perform poorly on degraded images. Previously, several works have explored how to perform image classification of degraded images while training a single model for each degradation. Nevertheless, it becomes challenging to host several degradation models for each degradation on limited hardware applications and to estimate degradation parameters correctly at the run-time. This work proposes a method for effectively combining several models trained separately on different degradations into a single model to classify images with different types of degradations. Our proposed method is four-fold: (1) train a base model on clean images, (2) fine-tune the base model in-dividually for all given image degradations, (3) perform a fusion of weights given the fine-tuned models for individual degradations, (4) perform fine-tuning on given task using distillation and cross-entropy loss. Our proposed method can outperform previous state-of-the-art methods of pretraining in out-of-distribution generalization based on degradations such as JPEG compression, salt-and-pepper noise, Gaussian blur, and additive white Gaussian noise by 2.5% on CIFAR-100 dataset and by 1.3% on CIFAR-10 dataset. Moreover, our proposed method can handle degra-dation used for training without any explicit information about degradation at the inference time. Code will be available at https://github.com/dineshdaultani/FusionDistill.
Dance of the Neurons: Unraveling Sex from Brain Signals (short paper).
Mohammad-Javad Darvishi Bayazi
Mohammad S. Ghaemi
Jocelyn Faubert
Data-access performance anti-patterns in data-intensive systems
Biruk Asmare Muse
Kawser Wazed Nafi
Giuliano Antoniol
Data-intensive systems handle variable, high volume, and high-velocity data generated by human and digital devices. Like traditional softwar… (voir plus)e, data-intensive systems are prone to technical debts introduced to cope-up with the pressure of time and resource constraints on developers. Data-access is a critical component of data-intensive systems as it determines the overall performance and functionality of such systems. While data access technical debts are getting attention from the research community, technical debts affecting the performance, are not well investigated. Objective: Identify, categorize, and validate data access performance issues in the context of NoSQL-based and polyglot persistence data-intensive systems using qualitative study. Method: We collect issues from NoSQL-based and polyglot persistence open-source data-intensive systems and identify data access performance issues using inductive coding and build a taxonomy of the root causes. Then, we validate the perceived relevance of the newly identified performance issues using a developer survey.
Decoding of Polar Codes Using Quadratic Unconstrained Binary Optimization
Huayi Zhou
Ryan Seah
Marwan Jalaleddine