Humans can communicate and observe media with different modalities, such as texts, sounds, and images. For robots to be more generalizable e
… (voir plus)mbodied agents, they should be capable of following instructions and perceiving the world with adaptation to diverse modalities. Current robotic learning methodologies often focus on single-modal task specification and observation, thereby limiting their ability to process rich multi-modal information. Addressing this limitation, we present an end-to-end general-purpose multi-modal system named Any-to-Policy Embodied Agents. This system empowers robots to handle tasks using various modalities, whether in combinations like text-image, audio-image, text-point cloud, or in isolation. Our innovative approach involves training a versatile modality network that adapts to various inputs and connects with policy networks for effective control. Because of the lack of existing multi-modal robotics datasets for evaluation, we assembled a comprehensive real-world dataset encompassing 30 robotic tasks. Each task in this dataset is richly annotated across multiple modalities, providing a robust foundation for assessment. We conducted extensive validation of our proposed unified modality embodied agent using several simulation benchmarks, including Franka Kitchen, Meta-World, and Maniskill2, as well as in our real-world settings. Our experiments showcase the promising capability of building embodied agents that can adapt to diverse multi-modal in a unified framework.