Publications

SlepNet: Spectral Subgraph Representation Learning for Neural Dynamics
Rahul Singh
Yanlei Zhang
J. Adam Noah
Joy Hirsch
Graph neural networks have been useful in machine learning on graph-structured data, particularly for node classification and some types of … (voir plus)graph classification tasks. However, they have had limited use in representing patterning of signals over graphs. Patterning of signals over graphs and in subgraphs carries important information in many domains including neuroscience. Neural signals are spatiotemporally patterned, high dimensional and difficult to decode. Graph signal processing and associated GCN models utilize the graph Fourier transform and are unable to efficiently represent spatially or spectrally localized signal patterning on graphs. Wavelet transforms have shown promise here, but offer non-canonical representations and cannot be tightly confined to subgraphs. Here we propose SlepNet, a novel GCN architecture that uses Slepian bases rather than graph Fourier harmonics. In SlepNet, the Slepian harmonics optimally concentrate signal energy on specifically relevant subgraphs that are automatically learned with a mask. Thus, they can produce canonical and highly resolved representations of neural activity, focusing energy of harmonics on areas of the brain which are activated. We evaluated SlepNet across three fMRI datasets, spanning cognitive and visual tasks, and two traffic dynamics datasets, comparing its performance against conventional GNNs and graph signal processing constructs. SlepNet outperforms the baselines in all datasets. Moreover, the extracted representations of signal patterns from SlepNet offers more resolution in distinguishing between similar patterns, and thus represent brain signaling transients as informative trajectories. Here we have shown that these extracted trajectory representations can be used for other downstream untrained tasks. Thus we establish that SlepNet is useful both for prediction and representation learning in spatiotemporal data.
SlepNet: Spectral Subgraph Representation Learning for Neural Dynamics
Rahul Singh
Yanlei Zhang
J. Adam Noah
Joy Hirsch
Graph neural networks have been useful in machine learning on graph-structured data, particularly for node classification and some types of … (voir plus)graph classification tasks. However, they have had limited use in representing patterning of signals over graphs. Patterning of signals over graphs and in subgraphs carries important information in many domains including neuroscience. Neural signals are spatiotemporally patterned, high dimensional and difficult to decode. Graph signal processing and associated GCN models utilize the graph Fourier transform and are unable to efficiently represent spatially or spectrally localized signal patterning on graphs. Wavelet transforms have shown promise here, but offer non-canonical representations and cannot be tightly confined to subgraphs. Here we propose SlepNet, a novel GCN architecture that uses Slepian bases rather than graph Fourier harmonics. In SlepNet, the Slepian harmonics optimally concentrate signal energy on specifically relevant subgraphs that are automatically learned with a mask. Thus, they can produce canonical and highly resolved representations of neural activity, focusing energy of harmonics on areas of the brain which are activated. We evaluated SlepNet across three fMRI datasets, spanning cognitive and visual tasks, and two traffic dynamics datasets, comparing its performance against conventional GNNs and graph signal processing constructs. SlepNet outperforms the baselines in all datasets. Moreover, the extracted representations of signal patterns from SlepNet offers more resolution in distinguishing between similar patterns, and thus represent brain signaling transients as informative trajectories. Here we have shown that these extracted trajectory representations can be used for other downstream untrained tasks. Thus we establish that SlepNet is useful both for prediction and representation learning in spatiotemporal data.
Stable Gradients for Stable Learning at Scale in Deep Reinforcement Learning
Scaling deep reinforcement learning networks is challenging and often results in degraded performance, yet the root causes of this failure m… (voir plus)ode remain poorly understood. Several recent works have proposed mechanisms to address this, but they are often complex and fail to highlight the causes underlying this difficulty. In this work, we conduct a series of empirical analyses which suggest that the combination of non-stationarity with gradient pathologies, due to suboptimal architectural choices, underlie the challenges of scale. We propose a series of direct interventions that stabilize gradient flow, enabling robust performance across a range of network depths and widths. Our interventions are simple to implement and compatible with well-established algorithms, and result in an effective mechanism that enables strong performance even at large scales. We validate our findings on a variety of agents and suites of environments.
Stable Gradients for Stable Learning at Scale in Deep Reinforcement Learning
Scaling deep reinforcement learning networks is challenging and often results in degraded performance, yet the root causes of this failure m… (voir plus)ode remain poorly understood. Several recent works have proposed mechanisms to address this, but they are often complex and fail to highlight the causes underlying this difficulty. In this work, we conduct a series of empirical analyses which suggest that the combination of non-stationarity with gradient pathologies, due to suboptimal architectural choices, underlie the challenges of scale. We propose a series of direct interventions that stabilize gradient flow, enabling robust performance across a range of network depths and widths. Our interventions are simple to implement and compatible with well-established algorithms, and result in an effective mechanism that enables strong performance even at large scales. We validate our findings on a variety of agents and suites of environments.
Veracity: An Open-Source AI Fact-Checking System
William Garneau
Manon Gruaz
Li Wei Wang
Sukanya Krishna
Luda Cohen
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (voir plus) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
Visual symbolic mechanisms: Emergent symbol processing in vision language models
Declan Campbell
To accurately process a visual scene, observers must bind features together to represent individual objects. This capacity is necessary, for… (voir plus) instance, to distinguish an image containing a red square and a blue circle from an image containing a blue square and a red circle. Recent work has found that language models solve this'binding problem'via a set of symbol-like, content-independent indices, but it is unclear whether similar mechanisms are employed by vision language models (VLMs). This question is especially relevant, given the persistent failures of VLMs on tasks that require binding. Here, we identify a set of emergent symbolic mechanisms that support binding in VLMs via a content-independent, spatial indexing scheme. Moreover, we find that binding errors can be traced directly to failures in these mechanisms. Taken together, these results shed light on the mechanisms that support symbol-like processing in VLMs, and suggest possible avenues for addressing the persistent binding failures exhibited by these models.
POCO: Scalable Neural Forecasting through Population Conditioning
Yu Duan
Hamza Tahir Chaudhry
Misha B. Ahrens
Christopher D Harvey
Karl Deisseroth
Kanaka Rajan
POCO: Scalable Neural Forecasting through Population Conditioning
Yu Duan
Hamza Tahir Chaudhry
Misha B. Ahrens
Christopher D Harvey
Karl Deisseroth
Kanaka Rajan
Predicting future neural activity is a core challenge in modeling brain dynamics, with applications ranging from scientific investigation to… (voir plus) closed-loop neurotechnology. While recent models of population activity emphasize interpretability and behavioral decoding, neural forecasting—particularly across multi-session, spontaneous recordings—remains underexplored. We introduce POCO, a unified forecasting model that combines a lightweight univariate forecaster with a population-level encoder to capture both neuron-specific and brain-wide dynamics. Trained across five calcium imaging datasets spanning zebrafish, mice, and C. elegans, POCO achieves state-of-the-art accuracy at cellular resolution in spontaneous behaviors. After pre-training, POCO rapidly adapts to new recordings with minimal fine-tuning. Notably, POCO’s learned unit embeddings recover biologically meaningful structure—such as brain region clustering—without any anatomical labels. Our comprehensive analysis reveals several key factors influencing performance, including context length, session diversity, and preprocessing. Together, these results position POCO as a scalable and adaptable approach for cross-session neural forecasting and offer actionable insights for future model design. By enabling accurate, generalizable forecasting models of neural dynamics across individuals and species, POCO lays the groundwork for adaptive neurotechnologies and large-scale efforts for neural foundation models. Code is available at https://github.com/yuvenduan/POCO.
Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor
Su Lin Blodgett
Agathe Balayn
Angelina Wang
F. Calmon
Margaret Mitchell
Michael Ekstrand
Reuben Daniel Binns
Solon Barocas
In AI research and practice, rigor remains largely understood in terms of methodological rigor -- such as whether mathematical, statistical,… (voir plus) or computational methods are correctly applied. We argue that this narrow conception of rigor has contributed to the concerns raised by the responsible AI community, including overblown claims about AI capabilities. Our position is that a broader conception of what rigorous AI research and practice should entail is needed. We believe such a conception -- in addition to a more expansive understanding of (1) methodological rigor -- should include aspects related to (2) what background knowledge informs what to work on (epistemic rigor); (3) how disciplinary, community, or personal norms, standards, or beliefs influence the work (normative rigor); (4) how clearly articulated the theoretical constructs under use are (conceptual rigor); (5) what is reported and how (reporting rigor); and (6) how well-supported the inferences from existing evidence are (interpretative rigor). In doing so, we also aim to provide useful language and a framework for much-needed dialogue about the AI community's work by researchers, policymakers, journalists, and other stakeholders.
Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor
Su Lin Blodgett
Agathe Balayn
Angelina Wang
F. Calmon
Margaret Mitchell
Michael Ekstrand
Reuben Daniel Binns
Solon Barocas
In AI research and practice, rigor remains largely understood in terms of methodological rigor -- such as whether mathematical, statistical,… (voir plus) or computational methods are correctly applied. We argue that this narrow conception of rigor has contributed to the concerns raised by the responsible AI community, including overblown claims about AI capabilities. Our position is that a broader conception of what rigorous AI research and practice should entail is needed. We believe such a conception -- in addition to a more expansive understanding of (1) methodological rigor -- should include aspects related to (2) what background knowledge informs what to work on (epistemic rigor); (3) how disciplinary, community, or personal norms, standards, or beliefs influence the work (normative rigor); (4) how clearly articulated the theoretical constructs under use are (conceptual rigor); (5) what is reported and how (reporting rigor); and (6) how well-supported the inferences from existing evidence are (interpretative rigor). In doing so, we also aim to provide useful language and a framework for much-needed dialogue about the AI community's work by researchers, policymakers, journalists, and other stakeholders.
Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control
As real-world infrastructure systems become increasingly complex and large-scale, there is a growing need for learning-based control strateg… (voir plus)ies that can make informed decisions in complex and dynamic environments. However, large-scale problems — such as power grid control — introduce high-dimensional action spaces and necessitate transferability across varying grid topologies. We introduce **H**ierarchical **E**xpert-Guided **R**econfiguration **O**ptimization for **G**raph **T**opologies, **HERO-GT**, a model-based planning approach that combines a pretrained graph neural network (GNN) for topology-aware action pruning with a Monte Carlo Tree Search (MCTS) planner for targeted, structured exploration. More specifically, the high-level GNN predicts a promising subset of actions, which the low-level MCTS agent uses to focus its search and reduce computational overhead while remaining adaptable to unseen graph structures. Furthermore, the MCTS planner leverages a given *default policy*---which may be defined, for example, by heuristics, problem relaxations, or rule-based methods---to bias the search and prioritize actions that are expected to improve performance over the default. We deploy HERO-GT in power grid environments, demonstrating that it not only improves over a strong default policy, but also scales to a realistic operational setting where exhaustive search becomes computationally infeasible.
SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
Koopman operator theory provides a framework for nonlinear dynamical system analysis and time-series forecasting by mapping dynamics to a sp… (voir plus)ace of real-valued measurement functions, enabling a linear operator representation. Despite the advantage of linearity, the operator is generally infinite-dimensional. Therefore, the objective is to learn measurement functions that yield a tractable finite-dimensional Koopman operator approximation. In this work, we establish a connection between Koopman operator approximation and linear Recurrent Neural Networks (RNNs), which have recently demonstrated remarkable success in sequence modeling. We show that by considering an extended state consisting of lagged observations, we can establish an equivalence between a structured Koopman operator and linear RNN updates. Building on this connection, we present SKOLR, which integrates a learnable spectral decomposition of the input signal with a multilayer perceptron (MLP) as the measurement functions and implements a structured Koopman operator via a highly parallel linear RNN stack. Numerical experiments on various forecasting benchmarks and dynamical systems show that this streamlined, Koopman-theory-based design delivers exceptional performance.