Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Why do Vision Language Models (VLMs), despite success on standard benchmarks, often fail to match human performance on surprisingly simple v… (see more)isual reasoning tasks? While the underlying computational principles are still debated, we hypothesize that a crucial factor is a deficit in visually-grounded serial processing. To test this hypothesis, we compared human and VLM performance across tasks designed to vary serial processing demands in three distinct domains: geometric reasoning, perceptual enumeration, and mental rotation. Tasks within each domain varied serial processing load by manipulating factors such as geometric concept complexity, perceptual individuation load, and transformation difficulty. Across all domains, our results revealed a consistent pattern: decreased VLM accuracy was strongly correlated with increased human reaction time (used as a proxy for serial processing load). As tasks require more demanding serial processing -- whether composing concepts, enumerating items, or performing mental transformations -- the VLM-human performance gap widens reliably. These findings support our hypothesis, indicating that limitations in serial, visually grounded reasoning represent a fundamental bottleneck that distinguishes current VLMs from humans.
Why do Vision Language Models (VLMs), despite success on standard benchmarks, often fail to match human performance on surprisingly simple v… (see more)isual reasoning tasks? While the underlying computational principles are still debated, we hypothesize that a crucial factor is a deficit in visually-grounded serial processing. To test this hypothesis, we compared human and VLM performance across tasks designed to vary serial processing demands in three distinct domains: geometric reasoning, perceptual enumeration, and mental rotation. Tasks within each domain varied serial processing load by manipulating factors such as geometric concept complexity, perceptual individuation load, and transformation difficulty. Across all domains, our results revealed a consistent pattern: decreased VLM accuracy was strongly correlated with increased human reaction time (used as a proxy for serial processing load). As tasks require more demanding serial processing -- whether composing concepts, enumerating items, or performing mental transformations -- the VLM-human performance gap widens reliably. These findings support our hypothesis, indicating that limitations in serial, visually grounded reasoning represent a fundamental bottleneck that distinguishes current VLMs from humans.
Why do Vision Language Models (VLMs), despite success on standard benchmarks, often fail to match human performance on surprisingly simple v… (see more)isual reasoning tasks? While the underlying computational principles are still debated, we hypothesize that a crucial factor is a deficit in visually-grounded serial processing. To test this hypothesis, we compared human and VLM performance across tasks designed to vary serial processing demands in three distinct domains: geometric reasoning, perceptual enumeration, and mental rotation. Tasks within each domain varied serial processing load by manipulating factors such as geometric concept complexity, perceptual individuation load, and transformation difficulty. Across all domains, our results revealed a consistent pattern: decreased VLM accuracy was strongly correlated with increased human reaction time (used as a proxy for serial processing load). As tasks require more demanding serial processing -- whether composing concepts, enumerating items, or performing mental transformations -- the VLM-human performance gap widens reliably. These findings support our hypothesis, indicating that limitations in serial, visually grounded reasoning represent a fundamental bottleneck that distinguishes current VLMs from humans.
Some of the strongest evidence that human minds should be thought about in terms of symbolic systems has been the way they combine ideas, pr… (see more)oduce novelty, and learn quickly. We argue that modern neural networks -- and the artificial intelligence systems built upon them -- exhibit similar abilities. This undermines the argument that the cognitive processes and representations used by human minds are symbolic, although the fact that these neural networks are typically trained on data generated by symbolic systems illustrates that such systems play an important role in characterizing the abstract problems that human minds have to solve. This argument leads us to offer a new agenda for research on the symbolic basis of human thought.
Some of the strongest evidence that human minds should be thought about in terms of symbolic systems has been the way they combine ideas, pr… (see more)oduce novelty, and learn quickly. We argue that modern neural networks -- and the artificial intelligence systems built upon them -- exhibit similar abilities. This undermines the argument that the cognitive processes and representations used by human minds are symbolic, although the fact that these neural networks are typically trained on data generated by symbolic systems illustrates that such systems play an important role in characterizing the abstract problems that human minds have to solve. This argument leads us to offer a new agenda for research on the symbolic basis of human thought.
Some of the strongest evidence that human minds should be thought about in terms of symbolic systems has been the way they combine ideas, pr… (see more)oduce novelty, and learn quickly. We argue that modern neural networks -- and the artificial intelligence systems built upon them -- exhibit similar abilities. This undermines the argument that the cognitive processes and representations used by human minds are symbolic, although the fact that these neural networks are typically trained on data generated by symbolic systems illustrates that such systems play an important role in characterizing the abstract problems that human minds have to solve. This argument leads us to offer a new agenda for research on the symbolic basis of human thought.
To accurately process a visual scene, observers must bind features together to represent individual objects. This capacity is necessary, for… (see more) instance, to distinguish an image containing a red square and a blue circle from an image containing a blue square and a red circle. Recent work has found that language models solve this'binding problem'via a set of symbol-like, content-independent indices, but it is unclear whether similar mechanisms are employed by vision language models (VLMs). This question is especially relevant, given the persistent failures of VLMs on tasks that require binding. Here, we identify a set of emergent symbolic mechanisms that support binding in VLMs via a content-independent, spatial indexing scheme. Moreover, we find that binding errors can be traced directly to failures in these mechanisms. Taken together, these results shed light on the mechanisms that support symbol-like processing in VLMs, and suggest possible avenues for addressing the persistent binding failures exhibited by these models.
To accurately process a visual scene, observers must bind features together to represent individual objects. This capacity is necessary, for… (see more) instance, to distinguish an image containing a red square and a blue circle from an image containing a blue square and a red circle. Recent work has found that language models solve this'binding problem'via a set of symbol-like, content-independent indices, but it is unclear whether similar mechanisms are employed by vision language models (VLMs). This question is especially relevant, given the persistent failures of VLMs on tasks that require binding. Here, we identify a set of emergent symbolic mechanisms that support binding in VLMs via a content-independent, spatial indexing scheme. Moreover, we find that binding errors can be traced directly to failures in these mechanisms. Taken together, these results shed light on the mechanisms that support symbol-like processing in VLMs, and suggest possible avenues for addressing the persistent binding failures exhibited by these models.