Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Ultrasound is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its non-invasiveness and… (voir plus) availability. Deep learning methods have attracted considerable interest in this field, as they are capable of learning patterns in a collection of images and achieve clinically comparable levels of accuracy in steatosis grading. However, variations in patient populations, acquisition protocols, equipment, and operator expertise across clinical sites can introduce domain shifts that reduce model performance when applied outside the original training setting. In response, unsupervised domain adaptation techniques are being investigated to address these shifts, allowing models to generalize more effectively across diverse clinical environments. In this work, we propose a test-time batch normalization technique designed to handle domain shift, especially for changes in label distribution, by adapting selected features of batch normalization layers in a trained convolutional neural network model. This approach operates in an unsupervised manner, allowing robust adaptation to new distributions without access to label data. The method was evaluated on two abdominal ultrasound datasets collected at different institutions, assessing its capability in mitigating domain shift for hepatic steatosis classification. The proposed method reduced the mean absolute error in steatosis grading by 37% and improved the area under the receiver operating characteristic curve for steatosis detection from 0.78 to 0.97, compared to non-adapted models. These findings demonstrate the potential of the proposed method to address domain shift in ultrasound-based hepatic steatosis diagnosis, minimizing risks associated with deploying trained models in various clinical settings.
2025-03-26
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (publié)
Abstract Collective decision making using simple social interactions has been studied in many types of multiagent systems, including robot s… (voir plus)warms and human social networks. However, existing multiagent studies have rarely modeled the neural dynamics that underlie sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent’s neural dynamics with its environment. In our multiagent setup, that same decision also depends on the sensorimotor coordination between agents, via their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, interagent, and agent–environment coupling, and we use these results to identify the influences of environmental factors on decision difficulty. More generally, our results illustrate how collective behaviors can be analyzed in terms of the neural dynamics of the participating agents. This can contribute to ongoing developments in neuro-AI and self-organized multiagent systems.
Data visualization via dimensionality reduction is an important tool in exploratory data analysis. However, when the data are noisy, many ex… (voir plus)isting methods fail to capture the underlying structure of the data. Furthermore, existing methods that can theoretically eliminate all noise are difficult to implement in high dimensions. Here we propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes that denoises the data by leveraging time information and mitigates the curse of dimensionality using approaches from functional data analysis. We experimentally demonstrate that FIG outperforms other methods in terms of capturing the true structure, hyperparameter robustness, and computational speed. We then use our method to visualize EEG brain measurements of sleep activity.