Publications

A Text-guided Protein Design Framework
Shengchao Liu
Yutao Zhu
Yanjing Li
Zhuoxinran Li
Zhao Xu
Weili Nie
Anthony Gitter
Chaowei Xiao
Arvind Ramanathan
Hongyu Guo
Animashree Anandkumar
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
A data-driven approach to model spatial dose characteristics for catheter placement of high dose-rate brachytherapy for prostate cancer.
Disentangled Source-Free Personalization for Facial Expression Recognition with Neutral Target Data
Masoumeh Sharafi
Emma Ollivier
Muhammad Osama Zeeshan
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Perspectives on optimizing transport systems with supply-dependent demand
Mike Hewitt
Representation Improvement in Latent Space for Search-Based Testing of Autonomous Robotic Systems
Dmytro Humeniuk
Representation Improvement in Latent Space for Search-Based Testing of Autonomous Robotic Systems
Dmytro Humeniuk
Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images.
Michael Eickenberg
An Tang
Guy Cloutier
Ultrasound is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its non-invasiveness and… (voir plus) availability. Deep learning methods have attracted considerable interest in this field, as they are capable of learning patterns in a collection of images and achieve clinically comparable levels of accuracy in steatosis grading. However, variations in patient populations, acquisition protocols, equipment, and operator expertise across clinical sites can introduce domain shifts that reduce model performance when applied outside the original training setting. In response, unsupervised domain adaptation techniques are being investigated to address these shifts, allowing models to generalize more effectively across diverse clinical environments. In this work, we propose a test-time batch normalization technique designed to handle domain shift, especially for changes in label distribution, by adapting selected features of batch normalization layers in a trained convolutional neural network model. This approach operates in an unsupervised manner, allowing robust adaptation to new distributions without access to label data. The method was evaluated on two abdominal ultrasound datasets collected at different institutions, assessing its capability in mitigating domain shift for hepatic steatosis classification. The proposed method reduced the mean absolute error in steatosis grading by 37% and improved the area under the receiver operating characteristic curve for steatosis detection from 0.78 to 0.97, compared to non-adapted models. These findings demonstrate the potential of the proposed method to address domain shift in ultrasound-based hepatic steatosis diagnosis, minimizing risks associated with deploying trained models in various clinical settings.
Collective decision making by embodied neural agents
Nicolas Coucke
Mary Katherine Heinrich
Axel Cleeremans
Marco Dorigo
Abstract Collective decision making using simple social interactions has been studied in many types of multiagent systems, including robot s… (voir plus)warms and human social networks. However, existing multiagent studies have rarely modeled the neural dynamics that underlie sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent’s neural dynamics with its environment. In our multiagent setup, that same decision also depends on the sensorimotor coordination between agents, via their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, interagent, and agent–environment coupling, and we use these results to identify the influences of environmental factors on decision difficulty. More generally, our results illustrate how collective behaviors can be analyzed in terms of the neural dynamics of the participating agents. This can contribute to ongoing developments in neuro-AI and self-organized multiagent systems.
Data Visualization using Functional Data Analysis
Haozhe Chen
Andres Felipe Duque Correa
Kevin R. Moon
Data visualization via dimensionality reduction is an important tool in exploratory data analysis. However, when the data are noisy, many ex… (voir plus)isting methods fail to capture the underlying structure of the data. Furthermore, existing methods that can theoretically eliminate all noise are difficult to implement in high dimensions. Here we propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes that denoises the data by leveraging time information and mitigates the curse of dimensionality using approaches from functional data analysis. We experimentally demonstrate that FIG outperforms other methods in terms of capturing the true structure, hyperparameter robustness, and computational speed. We then use our method to visualize EEG brain measurements of sleep activity.
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Sungjin Ahn