Visual-Tactile Inference of 2.5D Object Shape From Marker Texture
Affan Jilani
Francois Hogan
Charlotte Morissette
M. Jenkin
Visual-tactile sensing affords abundant capabilities for contact-rich object manipulation tasks including grasping and placing. Here we intr… (voir plus)oduce a shape-from-texture inspired contact shape estimation approach for visual-tactile sensors equipped with visually distinct membrane markers. Under a perspective projection camera model, measurements related to the change in marker separation upon contact are used to recover surface shape. Our approach allows for shape sensing in real time, without requiring network training or complex assumptions related to lighting, sensor geometry or marker placement. Experiments show that the surface contact shape recovered is qualitatively and quantitatively consistent with those obtained through the use of photometric stereo, the current state of the art for shape recovery in visual-tactile sensors. Importantly, our approach is applicable to a large family of sensors not equipped with photometric stereo hardware, and also to those with semi-transparent membranes. The recovery of surface shape affords new capabilities to these sensors for robotic applications, such as the estimation of contact and slippage in object manipulation tasks (Hogan etal., 2022) and the use of force matching for kinesthetic teaching using multimodal visual-tactile sensing (Ablett etal., 2024).
Diminished social memory and hippocampal correlates of social interactions in chronic social defeat stress susceptibility
Amanda Larosa
Tian Rui Zhang
Alice S. Wong
Cyrus Y.H. Fung
Y. H. Fung Cyrus
Xiong Ling Yun (Jenny) Long
Prabhjeet Singh
Tak Pan Wong
Towards Multi-Brain Decoding in Autism: A Self-Supervised Learning Approach
Ghazaleh Ranjabaran
Quentin Moreau
Adrien Dubois
This study introduces a self-supervised learning (SSL) approach to hyperscanning electroencephalography (EEG) data, targeting the identifica… (voir plus)tion of autism spectrum condition (ASC) during social interactions. Hyperscanning enables simultaneous recording of neural activity across interacting individuals, offering a novel path for studying brain-to-brain synchrony in ASC. Leveraging a large-scale, single-brain EEG dataset for SSL pretraining, we developed a multi-brain classification model fine-tuned with hyperscanning data from dyadic interactions involving ASC and neurotypical participants. The SSL model demonstrated superior performance (78.13% accuracy) compared to supervised baselines and logistic regression using spectral EEG biomarkers. These results underscore the efficacy of SSL in addressing the challenges of limited labeled data, enhancing EEG-based diagnostic tools for ASC, and advancing research in social neuroscience.
La communication financière à l’épreuve de la crise COVID : une gestion des impressions ?
Corinne Bessieux-Ollier
Grégoire Davrinche
Nous étudions l’impact de la crise du COVID-19 sur la gestion des impressions pratiquée par les entreprises françaises cotées. Cette c… (voir plus)rise ayant eu un impact fort sur l’activité des entreprises, nous observons si les dirigeants modifient la manière de présenter l’information liée aux résultats non-GAAP, à travers l’utilisation de stratégies d’obscurcissement. Les données sur la gestion des impressions ont été collectées manuellement dans les communiqués de résultats annuels des entreprises du SBF 120 sur la période 2018-2020. Nous constatons une diminution générale du niveau de gestion des impressions en période de crise, notamment pour les entreprises des secteurs ayant été les plus impactés par la crise COVID. Cette diminution est toutefois moins prononcée pour les entreprises ayant sous-performé par rapport à leur secteur d’activité et pour les entreprises dont la performance a le plus diminué (indépendamment du secteur auquel elles appartiennent). Nos résultats suggèrent que les entreprises dont la baisse de performance pourrait être attribuée à des causes internes (résultats très défavorables, résultats en deçà du secteur d’activité) demeurent soucieuses de l’image qu’elles renvoient et maintiennent leur niveau de gestion des impressions malgré la crise.
TEARS: Text Representations for Scrutable Recommendations
Emiliano Penaloza
Olivier Gouvert
Haolun Wu
Traditional recommender systems rely on high-dimensional (latent) embeddings for modeling user-item interactions, often resulting in opaque … (voir plus)representations that lack interpretability. Moreover, these systems offer limited control to users over their recommendations. Inspired by recent work, we introduce TExtuAl Representations for Scrutable recommendations (TEARS) to address these challenges. Instead of representing a user’s interests through latent embed- dings, TEARS encodes them in natural text, providing transparency and allowing users to edit them. To encode such preferences, we use modern LLMs to generate high-quality user summaries which we find uniquely capture user preferences. Using these summaries we take a hybrid approach where we use an optimal transport procedure to align the summaries’ representations with the repre- sentation of a standard VAE for collaborative filtering. We find this approach can surpass the performance of the three popular VAE models while providing user-controllable recommendations. We further analyze the controllability of TEARS through three simu- lated user tasks to evaluate the effectiveness of user edits on their summaries. Our code and all user-summaries can be seen in an anonymized repository.
A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi 熙 Kang 康
Andrea Maccio
The Landscape of Causal Discovery Data: Grounding Causal Discovery in Real-World Applications
Philippe Brouillard
Chandler Squires
Jonas Wahl
Konrad Paul Kording
Karen Sachs
Causal discovery aims to automatically uncover causal relationships from data, a capability with significant potential across many scientifi… (voir plus)c disciplines. However, its real-world applications remain limited. Current methods often rely on unrealistic assumptions and are evaluated only on simple synthetic toy datasets, often with inadequate evaluation metrics. In this paper, we substantiate these claims by performing a systematic review of the recent causal discovery literature. We present applications in biology, neuroscience, and Earth sciences - fields where causal discovery holds promise for addressing key challenges. We highlight available simulated and real-world datasets from these domains and discuss common assumption violations that have spurred the development of new methods. Our goal is to encourage the community to adopt better evaluation practices by utilizing realistic datasets and more adequate metrics.
Associations between circulating amino acids and metabolic dysfunction‐associated steatotic liver disease in individuals living with severe obesity
Ina Maltais‐Payette
Jérôme Bourgault
Marie‐Frédérique Gauthier
Laurent Biertho
Simon Marceau
François Julien
Patricia L. Mitchell
Christian Couture
Francis Brière
Benoît J. Arsenault
André Tchernof
ECLARE: multi-teacher contrastive learning via ensemble distillation for diagonal integration of single-cell multi-omic data
Dylan Mann-Krzisnik
Integrating multimodal single-cell data, such as scRNA-seq and scATAC-seq, is key for decoding gene regulatory networks but remains challeng… (voir plus)ing due to issues like feature harmonization and limited quantity of paired data. To address these challenges, we introduce ECLARE, a novel framework combining multi-teacher ensemble knowledge distillation with contrastive learning for diagonal integration of single-cell multi-omic data. ECLARE trains teacher models on paired datasets to guide a student model for unpaired data, leveraging a refined contrastive objective and transport-based loss for precise cross-modality alignment. Experiments demonstrate ECLARE’s competitive performance in cell pairing accuracy, multimodal integration and biological structure preservation, indicating that multi-teacher knowledge distillation provides an effective mean to improve a diagonal integration model beyond its zero-shot capabilities. Additionally, we validate ECLARE’s applicability through a case study on major depressive disorder (MDD) data, illustrating its capability to reveal gene regulatory insights from unpaired nuclei. While current results highlight the potential of ensemble distillation in multi-omic analyses, future work will focus on optimizing model complexity, dataset scalability, and exploring applications in diverse multi-omic contexts. ECLARE establishes a robust foundation for biologically informed single-cell data integration, facilitating advanced downstream analyses and scaling multi-omic data for training advanced machine learning models.
scGraphETM: Graph-Based Deep Learning Approach for Unraveling Cell Type-Specific Gene Regulatory Networks from Single-Cell Multi-Omics Data
Wenqi Dong
Manqi Zhou
Boyu Han
Yi Wang
SpaTM: Topic Models for Inferring Spatially Informed Transcriptional Programs
Adrien Osakwe
Wenqi Dong
Qihuang Zhang
Robert Sladek
Spatial transcriptomics has revolutionized our ability to characterize tissues and diseases by contextualizing gene expression with spatial … (voir plus)organization. Available methods require researchers to either train a model using histology-based annotations or use annotation-free clustering approaches to uncover spatial domains. However, few methods provide researchers with a way to jointly analyze spatial data from both annotation-free and annotation-guided perspectives using consistent inductive biases and levels of interpretability. A single framework with consistent inductive biases ensures coherence and transferability across tasks, reducing the risks of conflicting assumptions. To this end, we propose the Spatial Topic Model (SpaTM), a topic-modeling framework capable of annotation-guided and annotation-free analysis of spatial transcriptomics data. SpaTM can be used to learn gene programs that represent histology-based annotations while providing researchers with the ability to infer spatial domains with an annotation-free approach if manual annotations are limited or noisy. We demonstrate SpaTM’s interpretability with its use of topic mixtures to represent cell states and transcriptional programs and how its intuitive framework facilitates the integration of annotation-guided and annotation-free analyses of spatial data with downstream analyses such as cell type deconvolution. Finally, we demonstrate how both approaches can be used to extend the analysis of large-scale snRNA-seq atlases with the inference of cell proximity and spatial annotations in human brains with Major Depressive Disorder.
A multivariable prediction model for invasive pulmonary aspergillosis in immunocompromised patients with acute respiratory failure (IPA-GRRR-OH score).
Alice Friol
Frédéric Pène
Alexandre Demoule
Achille Kouatchet
Laurent Argaud
Naike Bigé
Anne-Sophie Moreau
François Barbier
Djamel Mokart
Virginie Lemiale
Elie Azoulay