Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Too Big to Fool: Resisting Deception in Language Models
Large language models must balance their weight-encoded knowledge with in-context information from prompts to generate accurate responses. T… (voir plus)his paper investigates this interplay by analyzing how models of varying capacities within the same family handle intentionally misleading in-context information. Our experiments demonstrate that larger models exhibit higher resilience to deceptive prompts, showcasing an advanced ability to interpret and integrate prompt information with their internal knowledge. Furthermore, we find that larger models outperform smaller ones in following legitimate instructions, indicating that their resilience is not due to disregarding in-context information. We also show that this phenomenon is likely not a result of memorization but stems from the models' ability to better leverage implicit task-relevant information from the prompt alongside their internally stored knowledge.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (voir plus) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (voir plus) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (voir plus) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (voir plus)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (voir plus)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (voir plus)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability,… (voir plus) effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (voir plus) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.