Publications

AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
Amirhossein Abaskohi
Amrutha Varshini Ramesh
Shailesh Nanisetty
David Vazquez
Giuseppe Carenini
Issam Hadj Laradji
Min-Max Optimisation for Nonconvex-Nonconcave Functions Using a Random Zeroth-Order Extragradient Algorithm
Amir Ali Farzin
Yuen-Man Pun
Philipp Braun
Youssef Diouane
Iman Shames
Burst firing optimizes invariant coding of natural communication signals by electrosensory neural populations
Michael G. Metzen
Amin Akhshi
Anmar Khadra
Maurice J. Chacron
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
Saeid Jamshidi
Amin Nikanjam
Nafi Kawser Wazed
Lugha-Llama: Adapting Large Language Models for African Languages
Happy Buzaaba
Alexander Wettig
Christiane Fellbaum
Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks
Maelle Freteault
Loic Tetrel
Nicolas Farrugia
Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking… (voir plus) the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 hours) of the Friends TV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ∼2.5M parameters. Aligning SoundNet with brain data from three seasons of Friends led to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably to the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few shot learning.
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and Priors
Examining the detailed structure of galaxy populations provides valuable insights into their formation and evolution mechanisms. Significant… (voir plus) barriers to such analysis are the non-trivial noise properties of real astronomical images and the point spread function (PSF) which blurs structure. Here we present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution. The method, when applied to minimally processed \emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have otherwise only become visible in next-generation \emph{James Webb Space Telescope} (\emph{JWST}) imaging.
InfoGain Wavelets: Furthering the Design of Diffusion Wavelets for Graph-Structured Data
David R. Johnson
Michael Perlmutter
TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Carl Doersch
Yi Yang
Skanda Koppula
Viorica Patraucean
Xu Owen He
Ignacio Rocco
Mehdi S. M. Sajjadi
Advancing Sustainable Maritime Transport: A Machine Learning Approach to Predict and Mitigate Underwater Radiated Noise from Ships
Soukaina Boujdi
Ayoub Atanane
Pierre Cauchy
A Comparative Analysis of AI Models for Short-Term Solar Irradiance Forecasting
Saad Benbrahim
Abdelaziz Berrado
Enhancing Hybrid Model for Photovoltaic Power Prediction: A Case Study of Morocco
Samira Abousaid
Abdelaziz Berrado