Publications

AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang
Sweta Agrawal
Marek Masiak
Ricardo Rei
Eleftheria Briakou
Marine Carpuat
Xuanli He
Sofia Bourhim
Andiswa Bukula
Muhidin A. Mohamed
Temitayo Olatoye
Tosin Adewumi
Hamam Mokayed
Christine Mwase
Wangui Kimotho
Foutse Yuehgoh
Aremu Anuoluwapo
Jessica Ojo
Shamsuddeen Hassan Muhammad … (voir 41 de plus)
Salomey Osei
Abdul-Hakeem Omotayo
Chiamaka Ijeoma Chukwuneke
Perez Ogayo
Oumaima Hourrane
Salma El Anigri
Lolwethu Ndolela
Thabiso Mangwana
Shafie Abdi Mohamed
Hassan Ayinde
Ayinde Hassan
Oluwabusayo Olufunke Awoyomi
Lama Alkhaled
sana Sabah al-azzawi
Naome Etori
Millicent Ochieng
Clemencia Siro
Samuel Njoroge
Njoroge Kiragu
Eric Muchiri
Wangari Kimotho
Lyse Naomi Wamba
Daud Abolade
Simbiat Ajao
Iyanuoluwa Shode
Ricky Macharm
Ruqayya Nasir Iro
Saheed Salahudeen Abdullahi
Stephen Moore
Bernard Opoku
Zainab Akinjobi
Abeeb Afolabi
Nnaemeka Casmir Obiefuna
Onyekachi Ogbu
Sam Brian
Sam Ochieng’
Verrah Akinyi Otiende
CHINEDU EMMANUEL MBONU
Toadoum Sari Sakayo
Yao Lu
Pontus Stenetorp
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measur… (voir plus)ing this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
Better entity matching with transformers through ensembles
Jwen Fai Low
Pulei Xiong
Caffeine induces age-dependent increases in brain complexity and criticality during sleep
Philipp Thölke
Maxine Arcand-Lavigne
Tarek Lajnef
Sonia Frenette
Julie Carrier
Evaluating In-Context Learning of Libraries for Code Generation
Arkil Patel
Pradeep Dasigi
Immunotherapeutic targeting of surfaceome heterogeneity in AML.
Marie-Eve Bordeleau
Éric Audemard
Arnaud Metois
Louis Theret
Véronique Lisi
Azer Farah
Jean-Francois Spinella
Jalila Chagraoui
Ossama Moujaber
Léo Aubert
Banafsheh Khakipoor
Laure Mallinger
Isabel Boivin
Nadine Mayotte
Azadeh Hajmirza
Eric Bonneil
Francois Béliveau
Sybille Pfammatter
Albert Feghaly
Geneviève Boucher … (voir 9 de plus)
Patrick Gendron
Pierre Thibault
Frederic Barabe
Guillaume Richard-Carpentier
Josée Hébert
Vincent-Philippe Lavallee
Philippe Roux
Guy Sauvageau
Implementation of a Global Pediatric Trauma Course in an Upper Middle–Income Country: A Pilot Study
Abbie Naus
Madeleine Carroll
Ayla Gerk
David P. Mooney
Natalie L. Yanchar
Julia Ferreira
Karen E. Gripp
Caroline Ouellet
Fabio Botelho
Methods, Applications, and Directions of Learning-to-Rank in NLP Research
Justin Lee
Gabriel Bernier-Colborne
Sowmya Vajjala
Learning-to-rank (LTR) algorithms aim to order a set of items according to some criteria. They are at the core of applications such as web s… (voir plus)earch and social media recommendations, and are an area of rapidly increasing interest, with the rise of large language models (LLMs) and the widespread impact of these technologies on society. In this paper, we survey the diverse use cases of LTR methods in natural language processing (NLP) research, looking at previously under-studied aspects such as multilingualism in LTR applications and statistical significance testing for LTR problems. We also consider how large language models are changing the LTR landscape. This survey is aimed at NLP researchers and practitioners interested in understanding the formalisms and best practices regarding the application of LTR approaches in their research.
"One-Size-Fits-All"? Examining Expectations around What Constitute"Fair"or"Good"NLG System Behaviors
Li Lucy
Su Lin Blodgett
Milad Shokouhi
Hanna Wallach
Fairness-related assumptions about what constitute appropriate NLG system behaviors range from invariance, where systems are expected to beh… (voir plus)ave identically for social groups, to adaptation, where behaviors should instead vary across them. To illuminate tensions around invariance and adaptation, we conduct five case studies, in which we perturb different types of identity-related language features (names, roles, locations, dialect, and style) in NLG system inputs. Through these cases studies, we examine people's expectations of system behaviors, and surface potential caveats of these contrasting yet commonly held assumptions. We find that motivations for adaptation include social norms, cultural differences, feature-specific information, and accommodation; in contrast, motivations for invariance include perspectives that favor prescriptivism, view adaptation as unnecessary or too difficult for NLG systems to do appropriately, and are wary of false assumptions. Our findings highlight open challenges around what constitute"fair"or"good"NLG system behaviors.
Pioneering women in nuclear and radiation sciences
Mirta Dumancic
A responsible framework for applying artificial intelligence on medical images and signals at the point-of-care: the PACS-AI platform.
Pascal Thériault-Lauzier
Denis Cobin
Olivier Tastet
Élodie Labrecque Langlais
B. Taji
Guson Kang
A. Chong
Derek So
An Tang
J. W. Gichoya
Pierre-Luc Deziel
Julie G. Hussin
Samuel Kadoury
Robert Avram
Revisiting the 2023 wildfire season in Canada
Flavie Pelletier
Michael A. Wulder
Joanne C. White
Txomin Hermosilla
$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
Charles-Étienne Joseph
Boris Knyazev
Edouard Oyallon