Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning.
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs. By utilizing fas… (voir plus)t matrix block-approximation techniques, we propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions, while being able to meaningfully model local information of the graph (e.g., degrees) as well as global information (e.g., clustering coefficient, assortativity, etc.) if desired. This allows one to efficiently generate random networks with similar properties as an observed network, and the models can be used for several downstream tasks such as link prediction. Our methods are scalable to sparse graphs consisting of millions of nodes. Empirical evaluation demonstrates competitiveness in terms of both speed and accuracy with state-of-the-art methods—which are typically based on embedding the graph into some lowdimensional space— for link prediction, showcasing the potential of a more direct and interpretable probablistic model for this task.
Practical Dynamic SC-Flip Polar Decoders: Algorithm and Implementation
SC-Flip (SCF) is a low-complexity polar code decoding algorithm with improved performance, and is an alternative to high-complexity (CRC)-ai… (voir plus)ded SC-List (CA-SCL) decoding. However, the performance improvement of SCF is limited since it can correct up to only one channel error (
Decision making based on statistical association alone can be a dangerous endeavor due to non-causal associations. Ideally, one would rely o… (voir plus)n causal relationships that enable reasoning about the effect of interventions. Several methods have been proposed to discover such relationships from observational and inter-ventional data. Among them, GraN-DAG, a method that relies on the constrained optimization of neural networks, was shown to produce state-of-the-art results among algorithms relying purely on observational data. However, it is limited to observational data and cannot make use of interventions. In this work, we extend GraN-DAG to support interventional data and show that this improves its ability to infer causal structures
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-c… (voir plus)onsuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundant than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.
Reinforcement learning agents that operate in diverse and complex environments can benefit from the structured decomposition of their behavi… (voir plus)or. Often, this is addressed in the context of hierarchical reinforcement learning, where the aim is to decompose a policy into lower-level primitives or options, and a higher-level meta-policy that triggers the appropriate behaviors for a given situation. However, the meta-policy must still produce appropriate decisions in all states. In this work, we propose a policy design that decomposes into primitives, similarly to hierarchical reinforcement learning, but without a high-level meta-policy. Instead, each primitive can decide for themselves whether they wish to act in the current state. We use an information-theoretic mechanism for enabling this decentralized decision: each primitive chooses how much information it needs about the current state to make a decision and the primitive that requests the most information about the current state acts in the world. The primitives are regularized to use as little information as possible, which leads to natural competition and specialization. We experimentally demonstrate that this policy architecture improves over both flat and hierarchical policies in terms of generalization.
In typical Multi-Agent Reinforcement Learning (MARL) settings, each agent acts to maximize its individual reward objective. However, for col… (voir plus)lective social welfare maximization, some agents may need to act non-selfishly. We propose a reward shaping mechanism using extrinsic motivation for achieving modularity and increased cooperation among agents in Sequential Social Dilemma (SSD) problems. Our mechanism, inspired by capitalism, provides extrinsic motivation to agents by redistributing a portion of collected re-wards based on each agent’s individual contribution towards team rewards. We demonstrate empirically that this mechanism leads to higher collective welfare relative to existing baselines. Furthermore, this reduces free rider issues and leads to more diverse policies. We evaluate our proposed mechanism for already specialised agents that are pre-trained for specific roles. We show that our mechanism, in the most challenging CleanUp environment, significantly out-performs two baselines (based roughly on socialism and anarchy) and accumulates 2-3 times higher rewards in an easier setting of the environment.
One of the principal scientific challenges in deep learning is explaining generalization, i.e., why the particular way the community now tra… (voir plus)ins networks to achieve small training error also leads to small error on held-out data from the same population. It is widely appreciated that some worst-case theories -- such as those based on the VC dimension of the class of predictors induced by modern neural network architectures -- are unable to explain empirical performance. A large volume of work aims to close this gap, primarily by developing bounds on generalization error, optimization error, and excess risk. When evaluated empirically, however, most of these bounds are numerically vacuous. Focusing on generalization bounds, this work addresses the question of how to evaluate such bounds empirically. Jiang et al. (2020) recently described a large-scale empirical study aimed at uncovering potential causal relationships between bounds/measures and generalization. Building on their study, we highlight where their proposed methods can obscure failures and successes of generalization measures in explaining generalization. We argue that generalization measures should instead be evaluated within the framework of distributional robustness.
The use of Natural Language (NL) interfaces to allow devices and applications to respond to verbal commands or free-form textual queries is … (voir plus)becoming increasingly prevalent in our society. To a large extent, their success in interpreting and responding to a request is dependent upon rich underlying ontologies and conceptual models that understand the technical or domain specific vocabulary of diverse users. The effective use of NL interfaces in the Software Engineering (SE) domains requires its own ontology models focusing upon software related terms and concepts. While many SE glossaries exist, they are often incomplete and tend to define the vocabulary for specific sub-fields without capturing associations between terms and phrases. This limits their usefulness for supporting NL-related tasks. In this paper we propose an approach for constructing and evolving a semantic network of software engineering concepts and phrases. Our approach starts with a set of existing SE glossaries, uses the existing glossary terms and explicitly defined associations as a starting point, uses machine learning-based techniques to dynamically identify and document additional associations between terms, leverages the network to interpret NL queries in the SE domain, and finally augments the resulting semantic network with feedback provided by users. We evaluate the viability of our approach within the sub-domain of Agile Software Development, focusing on requirements related queries, and show that the semantic network enhances the ability of an NL interface to correctly interpret and execute user queries.
2020-01-01
2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE) (publié)