Concurrent prescriptions for opioids and benzodiazepines and risk of opioid overdose: protocol for a retrospective cohort study using linked administrative data
Erin Y Liu
Robyn Tamblyn
Kristian B Filion
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
Axel Laborieux
Maxence Ernoult
Benjamin Scellier
Julie Grollier
Damien Querlioz
Smart Futures Based Resource Trading and Coalition Formation for Real-Time Mobile Data Processing
Ruitao Chen
Xianbin Wang
Collaboration among mobile devices (MDs) is becoming more important, as it could augment computing capacity at the network edge through peer… (voir plus)-to-peer service provisioning, and directly enhance real-time computational performance in smart Internet-of-Things applications. As an important aspect of collaboration mechanism, conventional resource trading (RT) among MDs relies on an onsite interaction process, i.e., price negotiation between service providers and requesters, which, however, inevitably incurs excessive latency and degrades RT efficiency. To overcome this challenge, this article adopts the concept of futures contract (FC) used in financial market, and proposes a smart futures for low latency RT. This new technique enables MDs to form trading coalitions and negotiate multilateral forward contracts applied to a collaboration term in the future. To maximize the benefits of self-interested MDs, the negotiation process of FC is modelled as a coalition formation game comprised of three components executed in an iterative manner, i.e., futures resource allocation, revenue sharing and payment allocation, and distributed decision-making of individual MD. Additionally, a FC enforcement scheme is implemented to efficiently manage the onsite resource sharing via recording resource balances of different task-types and MDs. Simulation results prove the superiority of smart futures in RT latency reduction and trading fairness provisioning.
Smart Futures Based Resource Trading and Coalition Formation for Real-Time Mobile Data Processing
Ruitao Chen
Xianbin Wang
Collaboration among mobile devices (MDs) is becoming more important, as it could augment computing capacity at the network edge through peer… (voir plus)-to-peer service provisioning, and directly enhance real-time computational performance in smart Internet-of-Things applications. As an important aspect of collaboration mechanism, conventional resource trading (RT) among MDs relies on an onsite interaction process, i.e., price negotiation between service providers and requesters, which, however, inevitably incurs excessive latency and degrades RT efficiency. To overcome this challenge, this article adopts the concept of futures contract (FC) used in financial market, and proposes a smart futures for low latency RT. This new technique enables MDs to form trading coalitions and negotiate multilateral forward contracts applied to a collaboration term in the future. To maximize the benefits of self-interested MDs, the negotiation process of FC is modelled as a coalition formation game comprised of three components executed in an iterative manner, i.e., futures resource allocation, revenue sharing and payment allocation, and distributed decision-making of individual MD. Additionally, a FC enforcement scheme is implemented to efficiently manage the onsite resource sharing via recording resource balances of different task-types and MDs. Simulation results prove the superiority of smart futures in RT latency reduction and trading fairness provisioning.
SVRG meets AdaGrad: painless variance reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad Harikandeh
Mark Schmidt
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Fartash Faghri
Cristina Vasconcelos
David J Fleet
Fabian Pedregosa
Optimal Spectral-Norm Approximate Minimization of Weighted Finite Automata
We address the approximate minimization problem for weighted finite automata (WFAs) with weights in …
Structured Sparsity Inducing Adaptive Optimizers for Deep Learning
Tristan Deleu
The parameters of a neural network are naturally organized in groups, some of which might not contribute to its overall performance. To prun… (voir plus)e out unimportant groups of parameters, we can include some non-differentiable penalty to the objective function, and minimize it using proximal gradient methods. In this paper, we derive the weighted proximal operator, which is a necessary component of these proximal methods, of two structured sparsity inducing penalties. Moreover, they can be approximated efficiently with a numerical solver, and despite this approximation, we prove that existing convergence guarantees are preserved when these operators are integrated as part of a generic adaptive proximal method. Finally, we show that this adaptive method, together with the weighted proximal operators derived here, is indeed capable of finding solutions with structure in their sparsity patterns, on representative examples from computer vision and natural language processing.
Enabling Secure Trustworthiness Assessment and Privacy Protection in Integrating Data for Trading Person-Specific Information
Rashid Hussain Khokhar
Farkhund Iqbal
Jamal Bentahar
With increasing adoption of cloud services in the e-market, collaboration between stakeholders is easier than ever. Consumer stakeholders de… (voir plus)mand data from various sources to analyze trends and improve customer services. Data-as-a-service enables data integration to serve the demands of data consumers. However, the data must be of good quality and trustful for accurate analysis and effective decision making. In addition, a data custodian or provider must conform to privacy policies to avoid potential penalties for privacy breaches. To address these challenges, we propose a twofold solution: 1) we present the first information entropy-based trust computation algorithm, IEB_Trust, that allows a semitrusted arbitrator to detect the covert behavior of a dishonest data provider and chooses the qualified providers for a data mashup and 2) we incorporate the Vickrey–Clarke–Groves (VCG) auction mechanism for the valuation of data providers’ attributes into the data mashup process. Experiments on real-life data demonstrate the robustness of our approach in restricting dishonest providers from participation in the data mashup and improving the efficiency in comparison to provenance-based approaches. Furthermore, we derive the monetary shares for the chosen providers from their information utility and trust scores over the differentially private release of the integrated dataset under their joint privacy requirements.
Prediction, Not Association, Paves the Road to Precision Medicine
Gael Varoquaux
Ewout W. Steyerberg
Task dependent deep LDA pruning of neural networks
Qing Tian
James J. Clark
The neural correlates of ongoing conscious thought
Jonathan Smallwood
Adam Turnbull
Hao-Ting Wang
Nerissa S.P. Ho
Giulia L. Poerio
Theodoros Karapanagiotidis
Delali Konu
Brontë Mckeown
Meichao Zhang
Charlotte Murphy
Deniz Vatansever
Mahiko Konishi
Robert Leech
Paul Seli
Jonathan W. Schooler
Boris C Bernhardt
Daniel S. Margulies
Elizabeth Jefferies